Objective: This study aimed to investigate the effect of immediate versus delayed dental implant placement strategies on cell differentiation in a dental callus.
Design: The implant was placed in the mandible with two nearby teeth using an idealized two-dimensional finite element model. Eight weeks after surgery, the mechanobiological modeling of healing was used to estimate cell differentiation. It was assumed that the callus was initially filled by mesenchymal cells. The model then transformed mechanical stimuli received by the callus from loadings in terms of distortional and dilatational strains into predictions of the cellular phenotypes, including fibroblasts, chondrocytes, and osteoblasts, or whether they would remain unchanged or die.
Results: The results demonstrated that delayed loading led to greater bone formation than immediate loading. Osteoblast colonies were observed in the base of threads in the immediately-loaded implant, whereas the delayed loading caused distant bone formation from the surrounding bone side towards the implant. The osteoblasts were differentiated from both intramembranous and endochondral mechanisms of ossification. After eight weeks, approximately 61 % of the callus was ossified in the delayed placement model compared to 35 % in the immediate placement model, resulting in a greater amount of fibrocartilaginous tissue on the bone side of the callus.
Conclusions: Immediate and delayed loading models generated different results. In the delayed strategy, bone cells were supplied appropriately during the first few weeks following surgery, whereas the immediate loading caused fibrocartilaginous tissue differentiation. In the form of distant osseointegration, the secondary stability of the dental implant was higher and faster due to the delayed placement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2023.105702 | DOI Listing |
Tissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFChem Biodivers
January 2025
GRT College of Education, Department of Pharmaceutical Chemistry, Tiruttani 631209, Tiruttani, INDIA.
Maternal Embryonic Leucine Zipper Kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!