Objectives: The HLA-DQA1*05 variant (rs2097432) is associated with increased risk of immunogenicity to tumor necrosis factor antagonists, with subsequent resistance to therapy in patients with inflammatory bowel disease. Identification of these patients would optimize personalized therapeutic selection.

Methods: Genomic DNA was extracted from 80 deidentified samples in an unselected patient population with an unknown rs2097432 genotype. Split sample analysis was performed using a reference laboratory. Primer probes for a TaqMan quantitative polymerase chain reaction (qPCR) assay (Thermo Fisher Scientific) were custom designed. Synthesized genomic-block fragments were used as controls. All qPCR reactions were performed using a TaqMan GTXpress Master Mix (Thermo Fisher Scientific) on the Applied Biosystems 7500 system under fast cycling conditions.

Results: Of 80 samples, 50% were wild-type reference genotypes, 22.5% were heterozygous, and 27.5% were homozygous variant calls, comparable to population data. Split analysis samples between 2 independent laboratories were 100% concordant. The detection limit tested across genomic-block controls processed in duplicate was reproducible on sample input from 10 ng titrated down to 1.25 ng across 2 independent runs. Further, analytical specificity assessed with previous wild-type reference and homozygous variant DNA spiked into genomic-block controls produced appropriate heterozygous genotypes.

Conclusions: Here we present validation of a lab-developed test for a rapid HLA-DQA1*05 (rs2097432) pharmacogenomics assay targeting a hotspot identified by genome-wide association studies. Targeted genotyping employed here will allow for expeditious personalized therapeutic selection.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcp/aqad036DOI Listing

Publication Analysis

Top Keywords

rapid hla-dqa1*05
8
pharmacogenomics assay
8
necrosis factor
8
therapy patients
8
patients inflammatory
8
inflammatory bowel
8
bowel disease
8
personalized therapeutic
8
thermo fisher
8
fisher scientific
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!