Marine-derived actinobacteria have tremendous potential to produce novel metabolites with diverse biological activities. The Andaman coast of India has a lot of microbial diversity, but it is still a relatively unknown ecology for isolating novel actinobacteria with beneficial bioactive compounds. We have isolated 568 actinobacterial strains from mangrove rhizosphere sediments and sponge samples. Crude extracts from 75 distinct strains were produced by agar surface fermentation and extracted using ethyl acetate. In the disc diffusion method, 25 actinobacterial strains showed antimicrobial activity; notably, the strain MAB56 demonstrated promising broad-spectrum activity. Strain MAB56 was identified as Streptomyces albus by cultural, microscopic, and molecular methods. Conditions for bioactive metabolites from MAB56 were optimized and produced in a lab-scale fermenter. Three active metabolites (C1, C2, and C3) that showed promising broad-spectrum antimicrobial activity were isolated through HPLC-based purification. Based on the UV, FT-IR, NMR, and LC-MS analysis, the chemical nature of the active compounds was confirmed as 12-methyltetradecanoic acid (C1), palmitic acid (C2), and tridecanoic acid (C3) with molecular formulae CHO, CHO, and CHO, respectively. Interestingly, palmitic acid (C2) also exhibited anti-HIV activity with an IC50 value of < 1 µg/ml. Our findings reveal that the actinobacteria from the Andaman marine ecosystems are promising for isolating anti-infective metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04493-y | DOI Listing |
Biochem Biophys Res Commun
January 2025
Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan. Electronic address:
Renal fibrosis is a crucial pathological feature in chronic kidney disease (CKD), resulting in the gradual decline of renal function. Salinomycin is an antibiotic discovered from Streptomyces albus that also regulates the fates of cells. However, its potential in kidney fibrosis remains elusive.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
Laminarin oligosaccharides (LOSs) degraded from laminarin present nutritional functions. Laminarinases with high activity and good stability are significant tools for LOS production. OUC-SaLam66, a novel GH128 laminarinase from , was heterologously expressed.
View Article and Find Full Text PDFMar Drugs
October 2024
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Heterologous expression has emerged as an effective strategy in activating cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster derived from marine sp. HDN155000 in the chassis host J1074.
View Article and Find Full Text PDFSynth Syst Biotechnol
August 2024
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
The TetR family of regulators are an important group of transcription regulators that regulate diverse cellular processes in prokaryotes. In this study, we found that XNR_0706, a TetR family regulator, controlled the expression of , , and putatively involved in fatty acid β-oxidation by interacting with the promoter regions in B4. The transcription level of these four genes was downregulated in deletion strain (ΔXNR_0706) and restored by complementation in Δ0706/pIB-, demonstrating that XNR_0706 was a positive transcriptional regulator of the genes.
View Article and Find Full Text PDFMicrob Pathog
November 2024
Department of Microbiology, Egyptian Drug Authority, Cairo, 11511, Egypt. Electronic address:
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!