Peptide extract from spent yeast improves resistance of Saccharomyces cerevisiae to oxidative stress.

Appl Microbiol Biotechnol

Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.

Published: June 2023

Yeast cells face various stress factors during industrial fermentations, since they are exposed to harsh environmental conditions, which may impair biomolecules productivity and yield. In this work, the use of an antioxidant peptide extract obtained from industrial spent yeast was explored as supplement for Saccharomyces cerevisiae fermentation to prevent a common bottleneck: oxidative stress. For that, a recombinant yeast strain, producer of β-farnesene, was firstly incubated with 0.5 and 0.7 g/L peptide extract, in the presence and absence of hydrogen peroxide (an oxidative stress inducer), for 1-5 h, and then assayed for intracellular reactive oxygen species, and growth ability in agar spot assays. Results showed that under 2 mM HO the peptide extract could improve cells growth and reduce reactive oxygen species production. Therefore, this antioxidant effect was further evaluated in shake-flasks and 2-L bioreactor batch fermentations. Peptide extract (0.7 g/L) was able to increase yeast resistance to the oxidative stress promoted by 2 mM HO, by reducing reactive oxygen species levels between 1.2- and 1.7-fold in bioreactor and between 1.2- and 3-fold in shake-flask fermentations. Moreover, improvements on yeast cell density of up to 1.5-fold and 2-fold, and on biomolecule concentration of up to 1.6-fold and 2.8-fold, in bioreactor and shake-flasks, respectively, were obtained. Thus, culture medium supplementation with antioxidant peptide extracted from industrial spent yeast is a promising strategy to improve fermentation performance while valuing biomass waste. This valorization can promote a sustainable and eco-friendly solution for the biotechnology industry by the implementation of a circular economy model. KEY POINTS: • Peptide extract from spent yeast applied for the first time on yeast fermentation. • Antioxidant peptide extract enhanced S. cerevisiae oxidative stress resistance. • Fermentation performance under stress improved by peptide extract supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175367PMC
http://dx.doi.org/10.1007/s00253-023-12514-3DOI Listing

Publication Analysis

Top Keywords

peptide extract
32
oxidative stress
20
spent yeast
16
antioxidant peptide
12
reactive oxygen
12
oxygen species
12
peptide
9
yeast
9
extract spent
8
saccharomyces cerevisiae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!