The selective electrochemical synthesis of 1H-indazoles and their N-oxides and the subsequent C-H functionalization of the 1H-indazole N-oxides are described. The electrochemical outcomes were determined by the nature of the cathode material. When a reticulated vitreous carbon cathode was used, a wide range of 1H-indazole N-oxides were selectively synthesized, and the electrosynthesis products were deoxygenated to N-heteroaromatics, owing to cathodic cleavage of the N-O bond via paired electrolysis, when a Zn cathode was used. The scope of this electrochemical protocol is broad, as both electron-rich and electron-poor substrates were tolerated. The potency of this electrochemical strategy was demonstrated through the late-stage functionalization of various bioactive molecules, making this reaction attractive for the synthesis of 1H-indazole derivatives for pharmaceutical research and development. Detailed mechanistic investigations involving electron paramagnetic resonance spectroscopy and cyclic voltammetry suggested a radical pathway featuring iminoxyl radicals. Owing to the rich reactivity of 1H-indazole N-oxides, diverse C-H functionalization reactions were performed. We demonstrated the synthetic utility of 1H-indazole N-oxides by synthesizing the pharmaceutical molecules lificiguat and YD (3); key intermediates for bendazac, benzydamine, norepinephrine/serotonin reuptake inhibitors, SAM-531, and gamendazole analogues; and a precursor for organic light-emitting diodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202303460DOI Listing

Publication Analysis

Top Keywords

1h-indazole n-oxides
20
1h-indazoles n-oxides
8
electrochemical synthesis
8
synthesis 1h-indazole
8
c-h functionalization
8
n-oxides
7
1h-indazole
6
electrochemical
5
exploring synthetic
4
synthetic strategies
4

Similar Publications

The selective electrochemical synthesis of 1H-indazoles and their N-oxides and the subsequent C-H functionalization of the 1H-indazole N-oxides are described. The electrochemical outcomes were determined by the nature of the cathode material. When a reticulated vitreous carbon cathode was used, a wide range of 1H-indazole N-oxides were selectively synthesized, and the electrosynthesis products were deoxygenated to N-heteroaromatics, owing to cathodic cleavage of the N-O bond via paired electrolysis, when a Zn cathode was used.

View Article and Find Full Text PDF

Indazoles are an important class of nitrogen heterocycles because of their excellent performance in biologically relevant applications, such as in chemical biology and medicinal chemistry. In these applications, convenient synthesis using commercially available and diverse building blocks is highly desirable. Within this broad class, 2-indazoles are relatively underexploited when compared to 1-indazole, perhaps because of regioselectivity issues associated with the synthesis of 2-indazoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!