Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate estimation of crop yield predictions is of great importance for food security under the impact of climate change. We propose a data-driven crop model that combines the knowledge advantage of process-based modeling and the computational advantage of data-driven modeling. The proposed model tracks the daily biomass accumulation process during the maize growing season and uses daily produced biomass to estimate the final grain yield. Computational studies using crop yield, field location, genotype and corresponding environmental data were conducted in the US Corn Belt region from 1981 to 2020. The results suggest that the proposed model can achieve an accurate prediction performance with a 7.16% relative root-mean-square-error of average yield in 2020 and provide scientifically explainable results. The model also demonstrates its ability to detect and separate interactions between genotypic parameters and environmental variables. Additionally, this study demonstrates the potential value of the proposed model in helping farmers achieve higher yields by optimizing seed selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121691 | PMC |
http://dx.doi.org/10.1038/s42003-023-04833-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!