Quantum fluctuations of wavefunctions in disorder-driven quantum phase transitions (QPT) exhibit criticality, as evidenced by their multifractality and power law behavior. However, understanding the metal-insulator transition (MIT) as a continuous QPT in a disordered system has been challenging due to fundamental issues such as the lack of an apparent order parameter and its dynamical nature. Here, we elucidate the universal mechanism underlying the structural-disorder-driven MIT in 2D semiconductors through autocorrelation and multifractality of quantum fluctuations. The structural disorder causes curvature-induced band gap fluctuations, leading to charge localization and formation of band tails near band edges. As doping level increases, the localization-delocalization transition occurs when states above a critical energy become uniform due to unusual band bending by localized charge. Furthermore, curvature induces local variations in spin-orbit interactions, resulting in non-uniform ferromagnetic domains. Our findings demonstrate that the structural disorder in 2D materials is essential to understanding the intricate phenomena associated with localization-delocalization transition, charge percolation, and spin glass with both topological and magnetic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121577PMC
http://dx.doi.org/10.1038/s41467-023-38024-4DOI Listing

Publication Analysis

Top Keywords

quantum fluctuations
8
structural disorder
8
localization-delocalization transition
8
structural-disorder-driven critical
4
quantum
4
critical quantum
4
quantum fluctuation
4
fluctuation localization
4
localization two-dimensional
4
two-dimensional semiconductors
4

Similar Publications

Dual opposing quadrature-PT symmetry.

iScience

January 2025

Department of Electrical and Computering Engineering, Binghamton University, Binghamton, NY 13902, USA.

Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA) and loss in the presence of Langevin noise but also reveals an additional classical-to-quantum (C2Q) transition in noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature-PT symmetry, offering a comprehensive and complementary comprehension of C2Q transitions and PT-enhanced quantum sensing with optimal performance in the symmetry unbroken region.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

Information Theoretical Analysis of Quantum Mixedness in a Finite Model of Interacting Fermions.

Entropy (Basel)

January 2025

CeBio-Departamento de Ciencias Básicas, Universidad Nacional del Noroeste Provincia de Buenos Aires (UNNOBA), CONICET, Junin 6000, Argentina.

In this study, we utilize information theory tools to investigate notable features of the quantum degree of mixedness (Cf) in a finite model of interacting fermions. This model serves as a simplified proxy for an atomic nucleus, capturing its essential features in a more manageable form compared to a realistic nuclear model, which would require the diagonalization of matrices with millions of elements, making the extraction of qualitative features a significant challenge. Specifically, we aim to correlate Cf with particle number fluctuations and temperature, using the paradigmatic Lipkin model.

View Article and Find Full Text PDF

Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr Quantum Dots Using a High- Microdisk Cavity.

J Phys Chem Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!