Observing and braiding topological Majorana modes on programmable quantum simulators.

Nat Commun

IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA.

Published: April 2023

Electrons are indivisible elementary particles, yet paradoxically a collection of them can act as a fraction of a single electron, exhibiting exotic and useful properties. One such collective excitation, known as a topological Majorana mode, is naturally stable against perturbations, such as unwanted local noise, and can thereby robustly store quantum information. As such, Majorana modes serve as the basic primitive of topological quantum computing, providing resilience to errors. However, their demonstration on quantum hardware has remained elusive. Here, we demonstrate a verifiable identification and braiding of topological Majorana modes using a superconducting quantum processor as a quantum simulator. By simulating fermions on a one-dimensional lattice subject to a periodic drive, we confirm the existence of Majorana modes localized at the edges, and distinguish them from other trivial modes. To simulate a basic logical operation of topological quantum computing known as braiding, we propose a non-adiabatic technique, whose implementation reveals correct braiding statistics in our experiments. This work could further be used to study topological models of matter using circuit-based simulations, and shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations, whereby accelerating fundamental discoveries in quantum science and technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121601PMC
http://dx.doi.org/10.1038/s41467-023-37725-0DOI Listing

Publication Analysis

Top Keywords

majorana modes
16
topological majorana
12
quantum
10
braiding topological
8
topological quantum
8
quantum computing
8
topological
6
majorana
5
modes
5
observing braiding
4

Similar Publications

First-Principles Assessment of ZnTe and CdSe as Prospective Tunnel Barriers at the InAs/Al Interface.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.

View Article and Find Full Text PDF

By braiding non-Abelian anyons it is possible to realize fault-tolerant quantum algorithms through the computation of Jones polynomials. So far, this has been an experimentally formidable task. In this Letter, a photonic quantum system employing two-photon correlations and nondissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes.

View Article and Find Full Text PDF

The problems of disorder and insufficient system length are generally regarded as central problems in the realization of Majorana zero modes (MZM), which are a promising platform for realizing fault-tolerant topological quantum computing (TQC). In this work, we analyze eigenenergy spectra and transport properties of finite Kitaev chains using quantum transport simulations in a wide design space of hopping amplitude (), superconductor pairing (Δ), and electrochemical potential. Our goal is to determine critical or minimum acceptable chain lengths to obtain oscillation-free MZMs with suitable microsecond coherence times, and observable zero-bias conductance peaks (ZBCP) quantized almost at ~2/.

View Article and Find Full Text PDF

Chirality-Induced Majorana Zero Modes and Majorana Polarization.

ACS Nano

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an -wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias -wave superconducting heterostructure (without any external magnetic field).

View Article and Find Full Text PDF

The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr/NbSe ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr/NbSe by an ultralow temperature scanning tunneling microscope with higher spatial and energy resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!