Articular cartilage has a limited capacity for self-repair and clinical approaches to cartilage regeneration are needed. The only such approach developed to date involves an expansion of primary autologous chondrocytes in culture, followed by their reimplantation into a cartilage defect. However, because of the formation of fibrocartilage instead of hyaline cartilage, the outcome is often not satisfactory. It happens due to the de-differentiation of chondrocytes during the expansion step. Indeed, articular chondrocytes are non-proliferative and require partial or complete dedifferentiation before actively proliferating. In recent years stem/progenitor cells in articular cartilage (artSPCs) have been described. These cells maintain their own population and renew articular cartilage in sexually mature mice. artSPCs can, theoretically, be superior to chondrocytes, for repairing damaged cartilage. Accordingly, here, we searched for conditions that allow rapid expansion of both artSPCs and chondrocytes with simultaneous preservation of their ability to form hyaline cartilage. Among the modulators of Wnt, Notch, and FGF signaling and of cell adhesion screened, only fibronectin and modulators of the Notch pathway promoted the rapid expansion of artSPCs. Surprisingly, both inhibition and activation of the pathway had this effect. However, only inhibition of Notch during expansion facilitated the chondrogenic potential of both artSPCs and primary chondrocytes, whereas activation of this pathway abrogated this potential entirely. This effect was the same for murine and human cells. Our present observations indicate that Notch signaling is the major regulator of the chondrogenic capacity of both artSPCs and chondrocytes during their expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267697PMC
http://dx.doi.org/10.1093/stmcls/sxad031DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
notch signaling
8
chondrogenic potential
8
chondrocytes
8
articular chondrocytes
8
cartilage
8
hyaline cartilage
8
chondrocytes expansion
8
rapid expansion
8
expansion artspcs
8

Similar Publications

Purpose Of Review: Knee osteoarthritis (OA) is a gradual deterioration of articular cartilage characterized by pain and physical dysfunction. Although analgesic pharmacological agents are the first-line treatment for knee OA, they are not effective for all patients. In this study, we evaluate the efficacy of an intra-articular injection treatment using platelet-rich plasma (PRP) in reducing pain and improving functional ability.

View Article and Find Full Text PDF

A miR-activated hydrogel for the delivery of a pro-chondrogenic microRNA-221 inhibitor as a minimally invasive therapeutic approach for articular cartilage repair.

Mater Today Bio

February 2025

Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland.

Articular cartilage has limited capacity for repair (or for regeneration) under pathological conditions, given its non-vascularized connective tissue structure and low cellular density. Our group has successfully developed an injectable hydrogel for cartilage repair, composed of collagen type I (Col I), collagen type II (Col II), and methacrylated-hyaluronic acid (MeHA), capable of supporting chondrogenic differentiation of mesenchymal stem cells (MSCs) towards articular cartilage-like phenotypes. Recent studies have demonstrated that silencing may be an effective approach in promoting improved MSC chondrogenesis.

View Article and Find Full Text PDF

Osteochondritis dissecans is a rare condition characterized by the deterioration of a small area of bone and cartilage without infection. Its exact cause is unclear, though factors such as abnormal bone development, joint pressure, repetitive injuries, inadequate blood supply, and genetic links have been observed. In this case, a 27-year-old woman experienced chronic right knee pain following a twisting injury, which led to reduced mobility and mild pain.

View Article and Find Full Text PDF

Knee Osteoarthritis (KOA) is characterized by phenotypic alterations, apoptosis, and the breakdown of the extracellular matrix (ECM) in the superficial articular cartilage cells. The inflammatory response activates the Endoplasmic Reticulum Stress (ERS) signaling pathway, which plays a critical role in the pathophysiology and progression of KOA. Chondrocytes stimulated by thapsigargin(TG)exhibit heightened ERS and significantly increase the expression of ERS-associated proteins.

View Article and Find Full Text PDF

Single-cell transcriptomic analysis of chondrocytes in cartilage and pathogenesis of osteoarthritis.

Genes Dis

March 2025

CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Chondrocyte is considered the only cell type in cartilage. However, the cell heterogeneity of chondrocytes in human articular cartilage is still not well defined, which hinders our understanding of the pathogenesis of osteoarthritis (OA). Here, we constructed a single-cell transcriptomic atlas of chondrocytes in healthy cartilage and identified nine chondrocyte subsets including homeostatic chondrocytes, proliferate fibrochondrocytes, and hypertrophic chondrocytes (HTC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!