Subarachnoid hemorrhage (SAH) is a severe acute cerebrovascular event that not only impairs the central nervous system but also negatively affects various other organs, including the heart. The underlying mechanisms, however, remain unclear. In this study, we discovered that mice with SAH exhibited significant cardiac injuries, such as extended QT and QTc intervals, cardiac fibrosis, and reduced cardiac ejection fractions. This phenomenon was accompanied by increased galectin-3 expression in the cardiac ventricle and can be reversed by galectin-3 inhibitor TD139. Interestingly, we also observed increased co-expression of galectin-3 in macrophage within the heart tissue of SAH mice. Additionally, when macrophage activation was suppressed using the beta-blocker propranolol, cardiac function improved, and galectin-3 expression in the cardiac tissue decreased. Collectively, our findings offer new insights into the role of galectin-3 in SAH-related cardiac dysfunction and suggest a macrophage-galectin-3 axis as a potential therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2023.114418 | DOI Listing |
Int J Cardiol
January 2025
Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Georgia, Athens, GA, USA.
Background: Inflammatory cells play a key role in the pathophysiology of AD and other neurodegenerative disorders. Glycans are known to mediate inflammatory cell activation and migration yet very little is understood about the expression of glycans, glycoproteins, and other glycoconjugates at the CP which serves as a gateway for peripheral immune cells into the brain. In a familial AD mouse model, we observed increased expression of Siglec-F-recognized glycans on CP epithelial cells.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America.
Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs.
View Article and Find Full Text PDFHum Immunol
December 2024
Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey.
Background: Idiopathic granulomatous mastitis (IGM) is a chronic inflammatory disorder characterised by the formation of non-caseating granulomas in breast tissue, primarily affecting young women of childbearing age. The aetiology of IGM remains unclear, with potential factors including trauma, hormonal influences, and autoimmune responses. Recent studies suggest that immune dysregulation may play a critical role in IGM, highlighting the need for exploration of biomarkers involved in inflammation and immune modulation, particularly LL-37, galectin-3, IL-36, and TLR3.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey.
Modified citrus pectin (MCP) modulates galectin-3, a key player in neuroinflammation linked to Alzheimer's disease. By inhibiting galectin-3, MCP reduces the brain's inflammatory response and may alleviate cognitive decline. This study examines MCP's impact on neuroinflammation, cognitive function, and its role in galectin-3 inhibition in a dementia model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!