Heavy metal contamination of soils is one of the main factors contributing to soil quality decline and loss of biodiversity, which is also associated with plant contamination, as metals accumulate in the surface layer of soils and then enter the trophic chain. The aims of the study were to assess the mobility and bioavailability of metals in soils to plants, and to estimate the ecological and health risks associated with heavy metal content in soils. 320 topsoil and 206 plant samples were collected. Fractional analysis showed that for most of the samples, there was no or low risk associated with the mobility of Cr, Pb, Cu, Ni, Zn, and low and medium for Cd. High and very high metal release risk was only shown for Cd (28 % of samples), and Zn and Pb (2 % of samples). The bioaccumulation factor found moderate levels of accumulation for Cd, Zn, Cu, Ni. High accumulation of Cd and Zn was found in 38 % and 15 % of plant samples. Alivibrio fischeri proved to be a more sensitive indicator of soil ecotoxicity compared to Sinapis alba. In the 81 % of the soil samples found a low probability of adverse effects on ecological receptors associated with exposure to soilborne metals. In the case of human health risk, no harmful health effects were observed due to accidental ingestion of metal-containing soils in the study area. In assessing metal risks, the choice of indicators is crucial. Moreover, the properties of soils have a significant impact on the mobility of metals and their bioaccumulation by plants. This means that the more varied the choice of indicators, the more comprehensive, reliable and close to reality the risk assessment of heavy metals in soils will be.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163574 | DOI Listing |
BMC Microbiol
December 2024
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.
View Article and Find Full Text PDFSci Rep
December 2024
Mining College, Guizhou University, Guiyang, 550025, China.
Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).
View Article and Find Full Text PDFSci Rep
December 2024
College of A&F Engineering and Planning, Tongren University, Tongren, 554300, China.
The Wanshan mercury mining area (WMMA) in Guizhou Province, China, has been identified as a region at high ecological risk owing to heavy metal contamination. This study employed non-lethal sampling methods, using the phalanges of Pelophylax nigromaculatus in the WMMA as analytical material. Ten heavy metal (metalloid) elements were selected for analysis, including Hg, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Se.
View Article and Find Full Text PDFSci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!