Corneal haze brought on by fibrosis due to insult can lead to partial or complete vision loss. Currently, corneal transplantation is the gold standard for treating severe corneal fibrosis, which comes with the risk of rejection and the issue of donor tissue shortages. Sphingolipids (SPLs) are known to be associated with fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to Transforming Growth Factor β (TGF-β) signaling and corneal fibrogenesis. This study aimed to elucidate the interplay of SPLs, specifically sphingosine-1-phosphate (S1P) signaling, and its' interactions with TGF-β signaling through detailed analyses of the corresponding downstream signaling targets in the context of corneal fibrosis, in vitro. Healthy human corneal fibroblasts (HCFs) were isolated, plated on polycarbonate membranes, and stimulated with a stable Vitamin C derivative. The 3D constructs were treated with either 5 μM sphingosine-1-phosphate (S1P), 5 μM SPHK I (I; inhibitor of sphingosine kinase 1, one of the two enzymes responsible for generating S1P in mammalian cells), 0.1 ng/mL TGF-β1, or 0.1 ng/mL TGF-β3. Cultures with control medium-only served as controls. All 3D constructs were examined for protein expression of fibrotic markers, SPLs, TGF-βs, and relevant downstream signaling pathways. This data revealed no significant changes in any LTBP (latent TGF-β binding proteins) expression when stimulated with S1P or I. However, LTBP1 was significantly upregulated via stimulation of TGF-β1 and TGF-β3, whereas LTBP2 was significantly upregulated only with TGF-β3 stimulation. Significant downregulation of TGF-β receptor II (TGF-βRII) following S1P stimulation but significant upregulation following I stimulation was observed. Following TGF-β1, S1P, and I stimulation, phospho-SMAD2 (pSMAD2) was significantly downregulated. Furthermore, I stimulation led to significant downregulation of SMAD4. Adhesion/proliferation/transcription regulation targets, SRC, FAK, and pERK 1/2 were all significantly downregulated by exogenous S1P, whereas I only significantly downregulated FAK. Exogenous TGF-β3 caused significant upregulation of AKT. Interestingly, both I and TGF-β3 caused significant downregulation of JNK expression. Lastly, TGF-β1 led to significant upregulation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1PR3), whereas TGF-β3 caused significant upregulation of only SphK1. Together with previously published work from our group and others, S1P inhibition exhibits great potential as an efficacious anti-fibrotic modality in human corneal stromal ECM. The current findings shed further light on a very complex and rather incompletely investigated mechanism, and cement the intricate crosstalk between SPLs and TGF-β in corneal fibrogenesis. Future studies will dictate the potential of utilizing SPLs/TGF-β signaling modulators as novel therapeutics in corneal fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2023.109487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!