Leukolectin-proteins are synthesized and secreted by lectocytes, a distinct category of fish embryonic mucus cells.

Fish Shellfish Immunol

Dept. of Molecular Biology, University of Bergen, 5020 Bergen, Norway. Electronic address:

Published: June 2023

AI Article Synopsis

  • Fish perivitelline fluid (PVF) contains important proteins that dissolve into hatching fluid (HF) during the hatching process, with an emphasis on identifying novel leukolectin proteins using advanced mass-spectrometry techniques.
  • Bioinformatics suggests that leukolectins are part of the tectonin protein family, linked to immune functions; the study aimed to locate LL-expressing cells in various fish species and characterize the LL-gene for understanding its potential roles.
  • LL-proteins were found predominantly in the mucus of embryos and larval fish, with specific tissue distribution observed in Atlantic salmon and other species, revealing the structure of the LL gene and its chromosomal location.

Article Abstract

Fish perivitelline fluid (PVF) is a vital extra-embryonic compartment. At hatching, PVF-contents dissolve into the hatching fluid (HF). Analysis of Atlantic salmon HF reveals nearly a hundred distinct proteins, most of which were identified by advanced mass-spectrometry. However, one entity with an apparent molecular weight 26 kDa, necessitated identification from its tryptic peptides. Subsequent cloning and sequencing revealed novel leukolectin-proteins. From bioinformatic analysis, leukolectins (LL) belong in the tectonin protein-family, with recognized functions in innate immunity. This study aims to identify LL-expressing cells in diverse fish species, and to characterize the LL-gene in order to predict bio-functions of leukolectins. LL-proteins were detected in HF from several fish species and one invertebrate, using polyclonal LL-specific IgGs. Embryonic LL-immunoreactive cells were numerous in Atlantic salmon, rainbow trout, fewer in Atlantic cod, and rare in Atlantic halibut and Oikopleura dioica. LL-immunoreactive cells were termed lectocytes, which corresponded to peridermal mucuscells stained by PAS, but unstained by eosin. Hence, lectocytes and hatching-gland cells were clearly distinguished. Northern blots revealed two salmon LL-transcripts at mid-embryogenesis. Such transcripts were detected in epithelial cells of the periderm, gills and oral cavity. LL-transcripts predominated in the periderm, while choriolysin-transcripts were dominant in the gills. No co-expression of choriolysins and LL-transcripts was detected. BAC-library screening yielded salmon LL's genestructure with 4 introns, 5 exons, TATA-box, multiple upstream putative transcription-factor bindingsites and polyadenylation site. LL-gene location on chromosome ssa17 was identified in Ssal_v3.1, the 2021version of the salmon genome. In conclusion, larvae from several fish species are outfitted with mucus enriched by LL-proteins. Mucus cells are present in embryos of all fishes, but embryonic lectocyte-numbers are far higher in species with near total larval survival. When (maternal) chorionic first-line immuno-defence is lost at hatching, leukolectin-enriched mucus may provide vital protection for larvae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.108730DOI Listing

Publication Analysis

Top Keywords

fish species
12
mucus cells
8
atlantic salmon
8
ll-immunoreactive cells
8
cells
7
fish
5
salmon
5
leukolectin-proteins synthesized
4
synthesized secreted
4
secreted lectocytes
4

Similar Publications

Animal growth is a fundamental component of population dynamics, which is closely tied to mortality, fecundity, and maturation. As a result, estimating growth often serves as the basis of population assessments. In fish, analysing growth typically involves fitting a growth model to age-at-length data derived from counting growth rings in calcified structures.

View Article and Find Full Text PDF

Fatty Acids of European Sardine () White Muscle Can Discriminate Geographic Origin Along the Iberian Atlantic Coast.

Foods

January 2025

CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.

The European sardine () ranks among the most valuable species of Iberian fisheries, and the accurate tracing of its geographic origin, once landed, is paramount to securing sustainable management of fishing stocks and discouraging fraudulent practices of illegal, unreported, and unregulated (IUU) fishing. The present study investigated the potential use of white muscle fatty acids (FAs) to successfully discriminate the geographic origin of samples obtained in seven commercially important fishing harbors along the Iberian Atlantic Coast. While 35 FAs were identified using gas chromatography-mass spectrometry in the white muscle of , the following, as determined by the Boruta algorithm, were key for sample discrimination: 14:0, 22:6-3, 22:5-3, 18:0, 20:5-3, 16:1-7, 16:0, and 18:1-7 (in increasing order of relevance).

View Article and Find Full Text PDF

New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability.

Foods

January 2025

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.

Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.

View Article and Find Full Text PDF

Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.

View Article and Find Full Text PDF

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!