TRESK (K18.1) possesses unique structural proportions within the K background potassium channel family. The previously described TRESK regulatory mechanisms are based on the long intracellular loop between the second and the third transmembrane segments (TMS). However, the functional significance of the exceptionally short intracellular C-terminal region (iCtr) following the fourth TMS has not yet been examined. In the present study, we investigated TRESK constructs modified at the iCtr by two-electrode voltage clamp and the newly developed epithelial sodium current ratio (ENaR) method in Xenopus oocytes. The ENaR method allowed the evaluation of channel activity by exclusively using electrophysiology and provided data that are otherwise not readily available under whole-cell conditions. TRESK homodimer was connected with two ENaC (epithelial Na channel) heterotrimers, and the Na current was measured as an internal reference, proportional to the number of channels in the plasma membrane. Modifications of TRESK iCtr resulted in diverse functional effects, indicating a complex contribution of this region to K channel activity. Mutations of positive residues in proximal iCtr locked TRESK in low activity, calcineurin-insensitive state, although this phosphatase binds to distant motifs in the loop region. Accordingly, mutations in proximal iCtr may prevent the transmission of modulation to the gating machinery. Replacing distal iCtr with a sequence designed to interact with the inner surface of the plasma membrane increased the activity of the channel to unprecedented levels, as indicated by ENaR and single channel measurements. In conclusion, the distal iCtr is a major positive determinant of TRESK function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206819 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.104737 | DOI Listing |
J Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.
Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.
Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.
Heliyon
January 2025
Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders.
View Article and Find Full Text PDFFront Psychiatry
January 2025
Feneryolu Medical Center, Üsküdar University, Istanbul, Türkiye.
Introduction: Major Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.
View Article and Find Full Text PDFEur Cardiol
December 2024
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark.
Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Restoration of independent walking ability is the primary objective of stroke rehabilitation; however, not all patients achieve this goal due to diverse impairments in the paretic lower limb and compensatory mechanisms that lead to an asymmetrical and mechanically inefficient gait. This investigation aimed to examine alterations in cortical activation in post-stroke patients while walking with a wearable two-channel functional electrical stimulation (FES) in comparison to walking without FES. This observational study was conducted to discern distinct activation patterns in 19 stroke patients during sessions with and without FES, while using functional near-infrared spectroscopy (fNIRS) to monitor changes in blood oxygen levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!