Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.3c00179 | DOI Listing |
Rev Sci Instrum
December 2024
School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, People's Republic of China.
Road crack detection approaches based on the image processing technique have attracted much attention during the past decade due to their convenience and efficiency, but most of them cannot achieve the expected performances due to the complex background interference and severe category imbalance of road images. This paper presents a hierarchical existential prior based on an expanded pseudo-label for crack detection. In particular, the framework contains three variants of U-Net, and each sub-network is trained by pseudo-labels generated by transforming semantic categories of non-crack pixels distributed in the neighborhoods of crack ones.
View Article and Find Full Text PDFFront Microbiol
December 2024
CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
Phenol is one of the major organic pollutants in high salt industrial wastewater. The biological treatment method is considered to be a cost-effective and eco-friendly method, in which the co-culture of microalgae and bacteria shows a number of advantages. In the previous study, a co-culture system featuring () and () was established and could degrade 400 mg L phenol at 3% NaCl concentration.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Amidst the accelerating pace of automation in sheet metal bending, the need for small-batch, multi-varietal, efficient, and adaptable production modalities has become increasingly pronounced. To address this need and to enhance the efficacy of the bending process, this study presents the design and development of an embedded soft PLC (Programmable Logic Controller) rooted in the Codesys development platform and leveraging the ARM Cortex-A55 architecture. This controller employs the EtherCAT communication protocol to facilitate seamless and efficient interactions with fully electric servo-driven CNC (Computerized Numerical Control) bending machinery.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan.
Ferroelectric properties of HfZrO are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar-axis-oriented HfZrO layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)-oriented HfZrO thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state-of-the-art ferroelectric polarization up to 78.
View Article and Find Full Text PDFBioresour Technol
December 2024
Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China. Electronic address:
This study aimed to examine the impact of aerobic granular sludge (AGS) sizes on its properties and alginate-like exopolymers (ALE) recovery potential. The AGS was cultivated in a lab-scale bioreactor and categorized into six size classes with 200 μm intervals. There appeared a critical size (400-800 μm) for developing stable AGS structure and excellent ALE recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!