Today, antidepressants are widely used and it is important to determine their trace amounts due to harmful consequences. Here, a new nano sorbent was reported for the simultaneous extraction and determination of three types of antidepressant drugs (Clomipramine (CLO), Clozapine (CLZ), and Trimipramine (TRP) by the thin-film solid-phase micro-extraction (TFME-μSPE) method followed by the Gas Chromatography-flame ionization detector (GC-FID) analysis. So, the compound poly (vinyl alcohol) (PVA)/citric acid(CA)/β-cyclodextrin/BiS@g-CN nano sorbent was constructed by electrospinning technique. Then, nano sorbent was studied to optimize the many parameters impacting the extraction performance. Electrospun nanofiber has a large surface area, high porosity, and homogeneous morphology with a uniform bead-free structure. In optimal conditions, the limits of detection and quantification were calculated to be 0.15-0.03 ng mL and 0.5-0.1 ng mL, respectively. The dynamic linear range (DLR) was in the range of 0.1 to 1000 ng mL for CLO and CLZ, and 0.5 to 1000 ng mL for TRP with correlation coefficients (R) of 0.999. The relative standard deviations (RSDs) were achieved in the range of 4.9-6.8% (intra-day, n = 4) and 5.4-7.9% (inter-day, n = 3) in the period of 3 days. Finally, the capability of the method was evaluated to simultaneously measure trace amounts of antidepressants aqueous sample with desirable extraction efficiency (78 to 95%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.463984DOI Listing

Publication Analysis

Top Keywords

nano sorbent
12
poly vinyl
8
vinyl alcohol
8
antidepressant drugs
8
trace amounts
8
development electrospun
4
electrospun nanofibers
4
nanofibers based
4
based poly
4
alcohol thin
4

Similar Publications

In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.

View Article and Find Full Text PDF

The most important aspect of sorbent-based approaches is the use of a sustainable, readily available, and cost-effective sorbent material for sample analysis. Biochar is an emerging and prominent sorbent material for various applications in sorbent-based techniques due to its availability, affordability, eco-friendly nature, porosity, pore structure, abundance of aliphatic and aromatic carbon structures, and abundant oxygen-containing functional groups. On the basis of the numerous benefits of biochar, this review discusses why biochar is the preferred sorbent in sorptive-based techniques.

View Article and Find Full Text PDF

Long-Range Metal-Sorbent Interactions Determine CO Capture and Conversion in Dual-Function Materials.

ACS Nano

January 2025

Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States.

Carbon capture and utilization involve multiple energy- and cost-intensive steps. Dual-function materials (DFMs) can reduce these demands by coupling CO adsorption and conversion into a single material with two functionalities: a sorbent phase and a metal for catalytic CO conversion. The role of metal catalysts in the conversion process seems salient from previous work, but the underlying mechanisms remain elusive and deserve deeper investigation to achieve maximum utilization of the two phases.

View Article and Find Full Text PDF

Separation of high-activity Bi from Ac for targeted alpha therapy is challenging due to the instability of existing sorbents. Surface-modified carbon materials have shown promise for use in inverse Ac/Bi generators. However, previously reported materials with irregular shapes may limit their applications in column separations.

View Article and Find Full Text PDF

This study demonstrates a new extraction method for determination of aflatoxins (AFs) in food samples by a GO-SiO/ZnO/FeO nanocomposite as new and effective sorbent. The nanocomposite structure was confirmed by FT-IR, XRD, EDX, FE-SEM, TEM, and mapping techniques. Optimization of the extraction process was conducted by investigating pH, adsorbent amount, sample volume, and solvent volume using central composite design (CCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!