Water from filter plants and bottled water is generally safe to drink but regular quality monitoring of these facilities requires development of quick analytical technique to ensure public safety and health. This study presented the variation of two components in spectra of conventional fluorescence spectroscopy (CFS) and four components in synchronous fluorescence spectroscopy (SFS) to assess the quality of 25 water samples from different sources. Poor quality water either due to organic or inorganic contaminants presented high intensity fluorescence emission in the blue green region and low intensity water Raman peak unlike an intense water Raman peak originated from pure water when excited at 365 nm. Emission intensity in the blue green region and water Raman peak can be used as a marker for quick screening of water quality. Although few discrepancies were observed in CF spectra of samples with intense Raman peak but were found to be positive for bacterial contamination, thus questioning the sensitivity of CFS that needs to be addressed. Whereas, SFS presented highly selective and detailed picture of water contaminants emitting aromatic amino acid, fulvic and humic like fluorescence. It is suggested that the specificity of CFS can be enhanced by coupling it with SFS or use of multiple excitation wavelengths to target different fluorophores for water quality analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122751 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!