Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!