Background And Objective: Measuring physiological loading conditions in vivo can be challenging, as methods are invasive or pose a high modeling effort. However, the physiological loading of bones is also imprinted in the bone microstructure due to bone (re)modeling. This information can be retrieved by inverse bone remodeling (IBR). Recently, an IBR method based on micro-finite-element (µFE) modeling was translated to homogenized-FE (hFE) to decrease computational effort and tested on the distal radius. However, this bone has a relatively simple geometry and homogeneous microstructure. Therefore, the objective of this study was to assess the agreement of hFE-based IBR with µFE-based IBR to predict hip joint loading from the head of the femur; a bone with more complex loading as well as more heterogeneous microstructure.

Methods: hFE-based IBR was applied to a set of 19 femoral heads using four different material mapping laws. One model with a single homogeneous material for both trabecular and cortical volume and three models with a separated cortex and either homogeneous, density-dependent inhomogeneous, or density and fabric-dependent orthotropic material. Three different evaluation regions (full bone, trabecular bone only, head region only) were defined, in which IBR was applied. µFE models were created for the same bones, and the agreement of the predicted hip joint loading history obtained from hFE and µFE models was evaluated. The loading history was discretized using four unit load cases.

Results: The computational time for FE solving was decreased on average from 500 h to under 1 min (CPU time) when using hFE models instead of µFE models. Using more information in the material model in the hFE models led to a better prediction of hip joint loading history. Inhomogeneous and inhomogeneous orthotropic models gave the best agreement to µFE-based IBR (RMSE% <14%). The evaluation region only played a minor role.

Conclusions: hFE-based IBR was able to reconstruct the dominant joint loading of the femoral head in agreement with µFE-based IBR and required considerably lower computational effort. Results indicate that cortical and trabecular bone should be modeled separately and at least density-dependent inhomogeneous material properties should be used with hFE models of the femoral head to predict joint loading.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107549DOI Listing

Publication Analysis

Top Keywords

hip joint
16
bone remodeling
12
joint loading
12
µfe models
12
loading history
12
bone
8
inverse bone
8
models
8
physiological loading
8
hfe-based ibr
8

Similar Publications

Background: Malnutrition predicts poor outcomes following hip fracture, affecting patient recovery, healthcare performance, and costs. Evidence-based guidelines recommend multicomponent, interdisciplinary nutrition care to improve intake, reduce complications, and enhance outcomes. This study examines global variation in oral nutrition support for older (65+ years) hip fracture inpatients.

View Article and Find Full Text PDF

Barbell squats are commonly used in strength training, but the anterior-posterior displacement of the Center of Mass (COM) may impair joint stability and increase injury risk. This study investigates the key factors influencing COM displacement during different squat modes.; Methods: This study recruited 15 male strength training enthusiasts, who performed 60% of their one-repetition maximum (1RM) in the Front Barbell Squat (FBS), High Bar Back Squat (HBBS), and Low Bar Back Squat (LBBS).

View Article and Find Full Text PDF

: Developmental dysplasia of the hip (DDH), defined by the malalignment of the femoral head and acetabulum, is a major precursor to coxarthrosis, posing substantial challenges during total hip arthroplasty (THA). Patients with coxarthrosis secondary to DDH often exhibit acetabular bone insufficiency, which makes challenging surgical reconstruction difficult. This study aimed to compare the radiologic and functional outcomes of robotically assisted and conventional manual THA techniques in patients with coxarthrosis secondary to Crowe type III-IV DDH.

View Article and Find Full Text PDF

Preoperative muscle atrophy leads to persistent gait abnormalities in patients undergoing total hip arthroplasty (THA). Efficient motor learning of the gluteus medius is crucial for their recovery. In this study, a single-joint hybrid assistive limb (HAL) was developed to assist hip abduction.

View Article and Find Full Text PDF

: The optimal venous thromboembolism (VTE) chemoprophylaxis approach after hip or knee total joint arthroplasty (TJA) remains controversial. This study aimed to characterize antithrombotic-related complications associated with various chemoprophylaxis regimens after TJA and to assess our current institutional risk-stratified prescribing tool. : This retrospective case-control study and regression analysis included elective unilateral TJA patients at a single institution between 1 July 2015 and 31 December 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!