Triplet-DNP in magnetically oriented microcrystal arrays.

J Magn Reson

Center for Quantum Information and Quantum Biology, Osaka University, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan.

Published: June 2023

We explore dynamic nuclear polarization using electron spins in the photo-excited triplet state (Triplet-DNP) in magnetically oriented microcrystal arrays (MOMAs) of pentacene-doped p-terphenyl, in which the individual crystallites are magnetically aligned and UV-cured. In contrast to the conventional approach to Triplet-DNP in powder, which suffers from reduced nuclear polarization due to the averaged electron polarization and the broadening of electron-spin resonance, Triplet-DNP of the MOMAs offers as high dynamic polarization as that attainable in single-crystals. In the case of pentacene-doped p-terphenyl, the enhanced H polarization in the one-dimensional MOMA, prepared simply by leaving the suspension in a stationary magnetic field before UV curation, can be higher than that attainable in the powder sample by an order of magnitude and comparable to that in single crystals and in the three-dimensional MOMA made using a modulational rotating field. Triplet-DNP of the MOMAs may find potential applications, such as the polarization of the co-doped target molecules and dissolution experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2023.107439DOI Listing

Publication Analysis

Top Keywords

triplet-dnp magnetically
8
magnetically oriented
8
oriented microcrystal
8
microcrystal arrays
8
nuclear polarization
8
pentacene-doped p-terphenyl
8
triplet-dnp momas
8
polarization
6
triplet-dnp
5
arrays explore
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!