Zero-valent iron based materials selection for permeable reactive barrier using machine learning.

J Hazard Mater

School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:

Published: July 2023

The zero-valent iron (ZVI) based reactive materials are potential remediation reagents in permeable reactive barriers (PRB). Considering that reactive materials is the essential to determining the long-term stability of PRB and the emergence of a large number of new iron-based materials. Here, we present a new approach using machine learning to screen PRB reactive materials, which proposes to improve the efficiency and practicality of selection of ZVI-based materials. To compensate for the insufficient amount of existing machine learning source data and the real-world implementation, machine learning combines evaluation index (EI) and reactive material experimental evaluations. XGboost model is applied to estimate the kinetic data and SHAP is used to improve the accuracy of model. Batch and column tests were conducted to investigate the geochemical characteristics of groundwater. The study find that specific surface area is a fundamental factor correlated with the kinetic constants of ZVI-based materials, according to SHAP analysis. Reclassifying the data with specific surface area significantly improved prediction accuracy (reducing RMSE from 1.84 to 0.6). Experimental evaluation results showed that ZVI had 3.2 times higher anaerobic corrosion reaction kinetic constants and 3.8 times lower selectivity than AC-ZVI. Mechanistic studies revealed the transformation pathways and endpoint products of iron compounds. Overall, this study is a successful initial attempt to use machine learning for selecting reactive materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131349DOI Listing

Publication Analysis

Top Keywords

machine learning
20
reactive materials
16
zero-valent iron
8
materials
8
permeable reactive
8
zvi-based materials
8
specific surface
8
surface area
8
kinetic constants
8
reactive
7

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!