The zero-valent iron (ZVI) based reactive materials are potential remediation reagents in permeable reactive barriers (PRB). Considering that reactive materials is the essential to determining the long-term stability of PRB and the emergence of a large number of new iron-based materials. Here, we present a new approach using machine learning to screen PRB reactive materials, which proposes to improve the efficiency and practicality of selection of ZVI-based materials. To compensate for the insufficient amount of existing machine learning source data and the real-world implementation, machine learning combines evaluation index (EI) and reactive material experimental evaluations. XGboost model is applied to estimate the kinetic data and SHAP is used to improve the accuracy of model. Batch and column tests were conducted to investigate the geochemical characteristics of groundwater. The study find that specific surface area is a fundamental factor correlated with the kinetic constants of ZVI-based materials, according to SHAP analysis. Reclassifying the data with specific surface area significantly improved prediction accuracy (reducing RMSE from 1.84 to 0.6). Experimental evaluation results showed that ZVI had 3.2 times higher anaerobic corrosion reaction kinetic constants and 3.8 times lower selectivity than AC-ZVI. Mechanistic studies revealed the transformation pathways and endpoint products of iron compounds. Overall, this study is a successful initial attempt to use machine learning for selecting reactive materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131349 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China.
Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.
Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.
BMC Med Inform Decis Mak
January 2025
Great Ormond Street Institute of Child Health, University College London, London, UK.
Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).
Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.
J Transl Med
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.
Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.
World J Surg Oncol
January 2025
Department of Hepatobiliary and Pancreas, Affiliated Hospital of Qingdao University, NO.1677 Wutaishan Road, Qingdao, Shandong Province, 266555, China.
Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.
Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.
BMC Cancer
January 2025
Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!