In daily life and during surgery, the skin, as the outermost organ of the human body, is easily damaged to form wounds. If the wound was infected by the bacteria, especially the drug-resistant bacteria such as methicillin-resistant staphylococcus aureus (MRSA), it was difficult to recover. Therefore, it was important to develop the safe antimicrobial strategy to inhibit bacterial growth in the wound site, in particular, to overcome the problem of bacterial drug resistance. Here, the Ag/AgBr-loaded mesoporous bioactive glass (Ag/AgBr-MBG) was prepared, which had excellent photocatalytic properties under simulated daylight for rapid antibacterial activity within 15 min by generating reactive oxygen species (ROS). Meanwhile, the killing rate of Ag/AgBr-MBG against MRSA was 99.19% within 15 min, which further reduced the generation of drug-resistant bacteria. In addition, Ag/AgBr-MBG particles could disrupt bacterial cell membranes, showing the broad-spectrum antibacterial properties and promoting tissue regeneration and infected wound healing. Ag/AgBr-MBG particles might have potential applications as a light-driven antimicrobial agent in the field of biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c00039 | DOI Listing |
Acta Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
J Colloid Interface Sci
January 2025
Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China.
Pitting corrosion caused by sulfate-reducing bacteria (SRB) significantly shortens the lifespan of metallic pipelines. Antibacterial coatings containing S-responsive drug-loaded nanocontainers represent a promising method to mitigate SRB corrosion. However, the challenge of balancing rapid bactericide release with continuous antibacterial effect limits their practical application.
View Article and Find Full Text PDFBiomater Adv
January 2025
College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshuixidao, Tianjin 300384, China.
Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!