AI Article Synopsis

  • Preterm infants in the NICU are at risk for early toxic stress exposure, which can lead to changes in their biology that affect neurodevelopmental outcomes.
  • This study aimed to explore the connection between early toxic stress in the NICU, epigenetic changes, and neurodevelopmental results in preterm infants, highlighting the need for better measurements of stress exposure.
  • The review included 13 articles and found that specific gene methylations related to serotonin and cortisol regulation were linked to poorer developmental outcomes, although the methods for measuring toxic stress varied across studies.

Article Abstract

Background: Preterm infants are uniquely vulnerable to early toxic stress exposure while in the neonatal intensive care unit (NICU) and also being at risk for suboptimal neurodevelopmental outcomes. However, the complex biological mechanisms responsible for variations in preterm infants' neurodevelopmental outcomes because of early toxic stress exposure in the NICU remain unknown. Innovative preterm behavioral epigenetics research offers a possible mechanism and describes how early toxic stress exposure may lead to epigenetic alterations, potentially affecting short- and long-term outcomes.

Objective: The aim of this study was to review the relationships between early toxic stress exposures in the NICU and epigenetic alterations in preterm infants. The measurement of early toxic stress exposure in the NICU and effect of epigenetic alterations on neurodevelopmental outcomes in preterm infants were also examined.

Methods: We conducted a scoping review of the literature published between January 2011 and December 2021 using databases PubMed, CINAHL, Cochrance Library, PsycINFO, and Web of Science. Primary data-based research that examined epigenetics, stress, and preterm infants or NICU were included.

Results: A total of 13 articles from nine studies were included. DNA methylations of six specific genes were studied in relation to early toxic stress exposure in the NICU: SLC6A4, SLC6A3, OPRMI, NR3C1, HSD11B2, and PLAGL1. These genes are responsible for regulating serotonin, dopamine, and cortisol. Poorer neurodevelopmental outcomes were associated with alterations in DNA methylation of SLC6A4, NR3C1, and HSD11B2. Measurements of early toxic stress exposure in the NICU were inconsistent among the studies.

Discussion: Epigenetic alterations secondary to early toxic stress exposures in the NICU may be associated with future neurodevelopmental outcomes in preterm infants. Common data elements of toxic stress exposure in preterm infants are needed. Identification of the epigenome and mechanisms by which early toxic stress exposure leads to epigenetic alterations in this vulnerable population will provide evidence to design and test individualized intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278559PMC
http://dx.doi.org/10.1097/NNR.0000000000000652DOI Listing

Publication Analysis

Top Keywords

toxic stress
44
early toxic
40
stress exposure
32
epigenetic alterations
24
preterm infants
24
neurodevelopmental outcomes
20
exposure nicu
16
stress
12
toxic
11
early
10

Similar Publications

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.

Sci Rep

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects.

View Article and Find Full Text PDF

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!