Photothermal therapy is a promising light-based medical treatment that relies on light absorption agents converting light irradiation into localized heat to destroy cancer cells or other diseased tissues. It is critical to enhance the therapeutic effects of cancer cell ablation for their practical applications. This study reports a high-performance combinational therapy for ablating cancer cells, including both photothermal therapy and chemotherapy to improve therapeutic efficiency. The prepared AuNR@mSiO loading molecular Doxorubicin (Dox) assemblies were highlighted by merits of facile acquisition, great stability, easy endocytosis, and rapid drug release in addition to improved anticancer capability upon irradiation with a femtosecond pulsed near-infrared (NIR) laser, where AuNR@mSiO nanoparticles afforded a high photothermal conversion efficiency of 31.7%. Two-photon excitation fluorescence imaging was introduced into confocal laser scanning microscope multichannel imaging to track the drug location and cell position in real time for monitoring the process of drug delivery in killing human cervical cancer HeLa cells and then to realize imaging-guiding cancer treatment. These nanoparticles exhibit widespread potential in photoresponsive utilizations including photothermal therapy, chemotherapy, one- and two-photon excited fluorescence imaging, and 3D fluorescence imaging and cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.3c00132DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
16
photothermal therapy
12
two-photon excitation
8
excitation fluorescence
8
cancer cells
8
including photothermal
8
therapy chemotherapy
8
cancer treatment
8
cancer
6
imaging
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!