Superhydrophobic coatings are essential to prepare water-repellent surfaces, self-cleaning materials, etc. Silica nano-materials are often immobilized to different surfaces for imparting super-hydrophobicity. Direct coating of silica-nanoparticles is often challenging since it can easily be peeled off under different environments. Herein, we reported the use of properly functionalized polyurethanes to facilitate the strong binding of silica-nanoparticles to surfaces. The alkyne terminal polyurethane was synthesized by step-growth polymerization while click-reactions facilitated to post-functionalization using phenyl moiety and were characterized by H, C nuclear magnetic resonance (NMR) spectroscopies, and H spin-lattice relaxation times (T s). Upon functionalization, the glass transition temperature (Tg) increased due to enhanced interchain interactions. Moreover, additives like di(propyleneglycol)dibenzoate showed a substantial plasticizing effect to compensate for the increase in Tg, an important parameter for low-temperature applications. NMR signatures the spatial interactions between various protons of grafted silica-nanoparticles and phenyl triazole functionalized polyurethanes, thus indicating the usefulness of polyurethanes to bind silica-nanoparticles. After coating functionalized silica-nanoparticles to leather using functionalized polyurethanes, a contact angle value of more than 157° was observed with retention of grain patterns of leather due to transparency. We anticipate the results to help design varieties of materials with superhydrophobicity where the structural integrity of the surfaces is retained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202201166 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Textile and Clothing College, Qingdao University, Qingdao 266071, China.
Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia.
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Basic Education, Beijing Polytechnic College, Beijing 100042, China.
In this study, waterborne polyurethane (WPU), a novel modifier, was used for the wet surface modification of talc, and its mechanism was investigated. Polypropylene (PP)-based composites with modified talc were synthesized and subjected to an examination of their mechanical properties. The wetting contact angle demonstrated that the modified talc exhibited an excellent modification effect at a specific amount of modifier (2.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Department of Chemistry, Durham University, Durham, DH1 3LE, U.K.
The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!