Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Virtual reality (VR)-based training for functions such as cognition, upper extremities, balancing, and activities of daily living (ADL) has been used on stroke patients, and its efficacy has been reported. However, no comparison has been made between the efficacy of VR-based training for daily activities that exactly reproduces ADL and functional training. Therefore, this study sought to analyze the difference in independency enhancement of VR-based training for daily activities compared to cognitive and motor functional training.
Patient Concerns And Diagnosis: This study was conducted on 4 patients who have been diagnosed with stroke and are currently receiving rehabilitation therapy in G hospital located in the city of Gwangju, using A-B-A'-B' design from single-subject experimental designs.
Interventions: Intervention was performed in 2 ways: application of VR-based training for daily activities after the application of cognitive and motor function training; and application of cognitive and motor function training after the application of VR-based training for daily activities. The Assessment of Motor and Process Skills, Computer Cognitive Screening Assessment System, Box and Block Test, and Grip and Pinch Strength Test were used to measure the changes in the performance of daily activities, cognitive function, and upper extremities function.
Outcomes: The results confirmed that the performance of daily activities, cognitive function, and upper extremities function was improved after the application of VR-based intervention. In addition, the efficacy of independency enhancement was maximized by the early approach of training for daily activities at the time of VR-based intervention in stroke patients.
Conclusions: VR-based intervention of training for daily activities and functional training can be considered to benefit the improvement of the performance of daily activities, cognitive function, and upper extremities function in stroke patients. In addition, although functional training was also effective in enhancing independency and functional improvement in stroke patients, an early approach to training for ADL based on tasks with objectives was deemed to be more effective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118341 | PMC |
http://dx.doi.org/10.1097/MD.0000000000033573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!