HM-Chromanone Alleviates Hyperglycemia by Protecting Pancreatic Islet Cells in Streptozotocin-Induced Diabetic Mice.

J Med Food

Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan, Korea.

Published: June 2023

We examined the effects of HM-chromanone (HMC) on alleviating hyperglycemia and protecting pancreatic β-cells from streptozotocin (STZ)-induced damage in C57BL/6J mice. HMC was administered to STZ-induced diabetic mice at 10 or 30 mg/kg, for 14 days. Thereafter, changes in fasting blood glucose levels, insulin-secretion, histopathological examination of pancreas islet cell and apoptotic protein levels, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were determined. The results revealed that HMC dose-dependently improved blood glucose concentrations and alleviated pancreatic islet cells damage. In diabetic mice, degeneration of the islet cells was observed wherein they appeared shrunken, with hyaline deterioration, nuclear dissolution, and condensation. However, morphology of the islet cell was restored, and nuclei were visibly rounded in the HMC (30 mg/kg)-administered diabetic mice. In addition, β-cell numbers were markedly increased in HMC mice compared to STZ-induced diabetic mice, and the number of cells stained with glucagon was decreased. HMC markedly decreased the expression of proapoptotic proteins and increased antiapoptotic proteins, and the number of apoptotic cells detected by TUNEL was elevated. HMC decreased expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in diabetic mice. Moreover, HMC increased antioxidant-enzymes activity, and decreased reactive oxygen species generation. In conclusion, the results demonstrate the potential of HMC to alleviate hyperglycemia by protecting the pancreatic β-cells in diabetic mice.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2022.K.0084DOI Listing

Publication Analysis

Top Keywords

diabetic mice
28
hyperglycemia protecting
12
protecting pancreatic
12
islet cells
12
mice
9
hmc
9
pancreatic islet
8
pancreatic β-cells
8
mice hmc
8
stz-induced diabetic
8

Similar Publications

Hirsutine Mitigates Ferroptosis in Podocytes of Diabetic Kidney Disease by Downregulating the p53/GPX4 Signaling Pathway.

Eur J Pharmacol

January 2025

Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. Electronic address:

Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks.

View Article and Find Full Text PDF

To clarify the roles and mechanisms of adipokine chemerin in exercise-induced bone improvements in type 2 diabetes mellitus (DM) mice and mice fed on high fat diet (HFD). DM mice were established by HFD+streptozotocin injection, exogenous chemerin was supplemented prior to running, and found that exogenous chemerin reversed 6-week exercise-induced improvements in cancellous bone parameters in DM mice. While adipose-specific chemerin knockout improved microstructure and mass of cancellous bone in HFD mice and further increased exercise-induced bone improvements, accompanied with promoted osteogenesis and inhibited osteoclasis represented as the changes of RANKL, M-CSF, Runx2, Osterix, OPG, ALP and CTSK.

View Article and Find Full Text PDF

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!