Bioluminescence has been drawing broad attention due to its high signal-to-noise ratio and high bioluminescence quantum yields, which has been widely applied in the fields of biomedicine, bioanalysis, and so on. Among numerous bioluminescent substrates, coelenterazine is famous for its wide distribution. However, the oxygenation reaction mechanism of coelenterazine is far from being completely understood. In this paper, the formation and decomposition mechanisms of coelenterazine dioxetanone were investigated via density functional theory (DFT) and time-dependent (TD) DFT approaches. The results showed that the oxygenation reaction first occurred along the triplet-state potential energy surface (PES), after the intersystem crossing (ISC), second jumped to the diradical-state PES, and ultimately formed coelenterazine dioxetanone. For the decomposition mechanism of dioxetanone, the computational results showed that the chemiexcitation of neutral dioxetanone was more efficient than that of other dioxetanone species. Moreover, the diradical properties and the degree of ionic character are modified by the counter ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c00453 | DOI Listing |
Materials (Basel)
February 2024
Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
Bioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which Coelenterazine is a prime example.
View Article and Find Full Text PDFJ Phys Chem A
May 2023
Faculty of Narcotics Control, Yunnan Police College, Kunming 650223, P. R. China.
Bioluminescence has been drawing broad attention due to its high signal-to-noise ratio and high bioluminescence quantum yields, which has been widely applied in the fields of biomedicine, bioanalysis, and so on. Among numerous bioluminescent substrates, coelenterazine is famous for its wide distribution. However, the oxygenation reaction mechanism of coelenterazine is far from being completely understood.
View Article and Find Full Text PDFInt J Mol Sci
April 2023
Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia.
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear.
View Article and Find Full Text PDFSci Rep
November 2022
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca-discharged obelin-v bound with the reaction product determined at 2.
View Article and Find Full Text PDFJ Phys Chem A
June 2022
Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Coelenterazine and other imidazopyrazinones are important bioluminescent substrates widespread in marine species and can be found in eight phyla of luminescent organisms. Light emission from these systems is caused by the formation and subsequent thermolysis of a dioxetanone intermediate, whose decomposition allows for efficient chemiexcitation to singlet excited states. Interestingly, some studies have also reported the involvement of unexpected dioxetane intermediates in the chemi- and bioluminescent reactions of Coelenterazine, albeit with little information on the underlying mechanisms of these new species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!