Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional chemotherapy usually fails to achieve its intended effect because of the poor water solubility, poor tumor selectivity, and low tumor accumulation of chemotherapy drugs. The systemic toxicity of chemotherapy agents is also a problem that cannot be ignored. It is expected that smart nano-drug delivery systems that are able to respond to tumor microenvironments will provide better therapeutic outcomes with decreased side effects of chemotherapeutics. Nano-drug delivery systems capable of breaking the redox balance can also increase the sensitivity of tumor cells to chemotherapeutics. In this study, using polymer-containing disulfide bonds, ester bonds, and d-α-tocopherol polyethylene glycol succinate (TPGS), which can amplify reactive oxygen species (ROS) in tumor cells, we have successfully prepared a smart glutathione (GSH) and esterase dual-responsive nano-drug delivery system (DTX@PAMBE-SS-TPGS NPs) with the ability to deplete GSH as well as amplify ROS and effectively release an encapsulated chemotherapy drug (DTX) in tumor cells. The potential of DTX@PAMBE-SS-TPGS NPs for enhanced antitumor effects was thoroughly evaluated using in vitro as well as in vivo experiments. Our research offers a promising strategy for maximizing the efficacy of tumor therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!