The photocatalytic transformation of carbon dioxide (CO ) into carbon-based fuels or chemicals using sustainable solar energy is considered an ideal strategy for simultaneously alleviating the energy shortage and environmental crises. However, owing to the low energy utilization of sunlight and inferior catalytic activity, the conversion efficiency of CO photoreduction is far from satisfactory. In this study, a MOF-derived hollow bimetallic oxide nanomaterial is prepared for the efficient photoreduction of CO . First, a unique ZIF-67-on-InOF-1 heterostructure is successfully obtained by growing a secondary Co-based ZIF-67 onto the initial InOF-1 nanorods. The corresponding hollow counterpart has a larger specific surface area after acid etching, and the oxidized bimetallic H-Co O /In O material exhibits abundant heterogeneous interfaces that expose more active sites. The energy band structure of H-Co O /In O corresponds well with the photosensitizer of [Ru(bpy) ]Cl , which results in a high CO yield of 4828 ± 570 µmol h g and stable activity over a consecutive of six runs, demonstrating adequate photocatalytic performance. This study demonstrates that the rational design of MOF-on-MOF heterostructures can completely exploit the synergistic effects between different components, which may be extended to other MOF-derived nanomaterials as promising catalysts for practical energy conversion and storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323637 | PMC |
http://dx.doi.org/10.1002/advs.202300797 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, 5# Zhongguancun Street, CHINA.
Zn-MnO2 batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn2+ as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn2+-MnO2 coulombic interaction, which is also the origin of pestilent MnO2 lattice deformation and performance degradation. Current studies particularly involve H+ insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn2+ insertion and structural collapse.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering Guizhou University Guiyang China.
Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.
View Article and Find Full Text PDFDalton Trans
January 2025
Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
(PhPNP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand to the hydride is often another hydride and studies that utilize other ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNP)Ru(H)(CO)(L)][BPh] complexes bearing isonitrile, PMe, or a N-heterocyclic ligand to the Ru-H.
View Article and Find Full Text PDFReprod Biomed Online
October 2024
IVF Department, ART Fertility Clinics, Abu Dhabi, UAE.
Research Question: Does a short co-incubation of gametes in conventional IVF affect post-insemination outcomes and embryo morphokinetics?
Design: Sibling oocyte randomized pilot study conducted between December 2020 and March 2023. Eligible couples (n = 55) were women aged 18-43 years with BMI 35 km/m or lower and male normal semen parameters. Cumulus oocyte complexes (COC) (six to 12) were randomized in a 1:1:2 proportion in long (16-18 h) or short (2 h) co-incubation IVF exposure and ICSI, respectively.
Environ Res
December 2024
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, 810007, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!