Analysis of streamlined computational models used to predict androgen disrupting chemicals revealed that assays measuring androgen receptor (AR) cofactor recruitment/dimerization were particularly indispensable to high predictivity, especially for AR antagonists. As the original dimerization assays used to develop the minimal assay models are no longer available, new assays must be established and evaluated as suitable alternatives to assess chemicals beyond the original 1,800+ supported by the current data. Here we present the AR2 assay, which is a stable, cell-based method that uses an enzyme complementation approach. Bipartite domains of the NanoLuc luciferase enzyme were fused to the human AR to quantitatively measure ligand-dependent AR homodimerization. 128 chemicals with known endocrine activity profiles including 43 AR reference chemicals were screened in agonist and antagonist modes and compared to the legacy assays. Test chemicals were rescreened in both modes using a retrofit method to incorporate robust cytochrome P450 (CYP) metabolism to assess CYP-mediated shifts in bioactivity. The AR2 assay is amenable to high-throughput screening with excellent robust Z'-factors (rZ') for both agonist (0.94) and antagonist (0.85) modes. The AR2 assay successfully classified known agonists (balanced accuracy = 0.92) and antagonists (balanced accuracy = 0.79-0.88) as well as or better than the legacy assays with equal or higher estimated potencies. The subsequent reevaluation of the 128 chemicals tested in the presence of individual human CYP enzymes changed the activity calls for five compounds and shifted the estimated potencies for several others. This study shows the AR2 assay is well suited to replace the previous AR dimerization assays in a revised computational model to predict AR bioactivity for parent chemicals and their metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112521 | PMC |
http://dx.doi.org/10.3389/ftox.2023.1134783 | DOI Listing |
Biophys Chem
December 2024
Tecnologico de Monterrey, The Institute for Obesity Research, Unit of Experimental Medicine, Monterrey, NL 64849, Mexico. Electronic address:
The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.
View Article and Find Full Text PDFJ Thromb Haemost
November 2024
Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden.
Background: In the splice variant factor (F)V-Short, 702 residues are deleted from the B domain, resulting in exposure of an acid region (AR2; 1493-1537) that binds TFPIα. FV-Short and protein S serve as synergistic TFPIα cofactors in inhibition of FXa. In the preAR2 region, a hydrophobic patch PLVIVGL (1481-1487) is crucial for synergistic TFPIα-cofactor activity and assembly of FV-Short, TFPIα, and protein S.
View Article and Find Full Text PDFAm J Clin Exp Immunol
October 2024
Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA) Riyadh, KSA.
Background: Adiponectin (AQ) plays a role in regulating immune responses. Previous research indicates that B cells can affect T cell transmigration via the adiponectin-induced peptide PEPITEM in Caucasians. This study explores whether this mechanism is also applicable to Saudi populations, considering potential ethnic variations in immune response.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2024
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Azienda USL Toscana Centro, Department of Hospitals Network, Medical Physics Unit Prato-Pistoia, Italy.
This large multicenter study of 37 magnetic resonance imaging scanners aimed at characterizing, for the first time, spatial profiles of inaccuracy (namely, Δ-profiles) in apparent diffusion coefficient (ADC) values with varying acquisition plan orientation and diffusion weighting gradient direction, using a statistical approach exploiting unsupervised clustering analysis. A diffusion-weighted imaging (DWI) protocol (b-value: 0-200-400-600-800-1000 s mm) with different combinations of acquisition plan orientation (axial/sagittal/coronal) and diffusion weighting gradient direction (anterior-posterior/left-right/feet-head) was acquired on a standard water phantom. For each acquisition setup, Δ-profiles along the 3 main orthogonal directions were characterized by fitting data with a second order polynomial function ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!