Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used in the closure of ductus arteriosus in premature infants. We aimed to develop and validate an interpretable machine-learning model for predicting the efficacy of NSAIDs for closing hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants.
Methods: We assessed 182 preterm infants ≤ 30 weeks of gestational age first treated with NSAIDs to close hsPDA. According to the treatment outcome, patients were divided into a "success" group and "failure" group. Variables for analysis were demographic features, clinical features, as well as laboratory and echocardiographic parameters within 72 h before medication use. We developed the machine-learning model using random forests. Model performance was assessed by the area under the receiver operating characteristic curve (AUC). Variable-importance and marginal-effect plots were constructed to explain the predictive model. The model was validated using an external cohort of two preterm infants who received ibuprofen (p.o.) to treat hsPDA.
Results: Eighty-three cases (45.6%) were in the success group and 99 (54.4%) in the failure group. Infants in the success group were associated with maternal chorioamnionitis ( = 0.002), multiple births ( = 0.007), gestational age at birth ( = 0.020), use of indometacin ( = 0.007), use of inotropic agents ( < 0.001), noninvasive ventilation ( = 0.001), plasma albumin level ( < 0.001), PDA size ( = 0.038) and Vmax ( = 0.013). Multivariable binary logistic regression analysis showed that maternal chorioamnionitis, multiple births, use of indomethacin, use of inotropic agents, plasma albumin level, and PDA size were independent risk factors influencing the efficacy of NSAIDs ( < 0.05). The AUC of the random forest model was 0.792. The top-three features contributing most to the model in the variable-importance plot were the plasma albumin level and platelet count 72 h before treatment and 24-h urine volume before treatment. In the external cohort, treatment succeeded in one case and failed in the other. The probabilities of success and failure predicted by the random forest model were 60.2% and 48.4%, respectively.
Conclusion: Based on clinical, laboratory, and echocardiographic features before first-time NSAIDs treatment, we constructed an interpretable machine-learning model, which has a certain reference value for predicting the closure of hsPDA in premature infants under 30 weeks of gestational age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110971 | PMC |
http://dx.doi.org/10.3389/fped.2023.1097950 | DOI Listing |
Brief Bioinform
November 2024
School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China.
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.
The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
Dry matter intake (DMI) determination is essential for effective management of meat goats, especially in optimizing feed utilization and production efficiency. Unfortunately, farmers often face challenges in accurately predicting DMI which leads to wastage of feed and an increase in the cost of production. This investigation aimed to predict DMI in Black Bengal goats by using body weight (BW), body condition score (BCS), average daily gain (ADG), and metabolic body weight (MBW) by applying an artificial neural network (ANN) model.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking.
View Article and Find Full Text PDFEur Radiol
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.
Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!