Background: Platelets play important roles in several physiological and pathological processes. Multiple antiplatelet drugs have been developed for clinical practice. The active components of traditional Chinese medicine with antithrombotic effects are promising drugs to modulate platelet function. In our study, the antiplatelet effect of isoliquiritigenin (ILTG) and its mechanisms were examined.

Methods: Human platelet-rich plasma and a washed platelet suspension were prepared. Platelets were stimulated using collagen, thrombin, or adenosine diphosphate (ADP). The platelet lumi-aggregometer was applied to detect the aggregation of platelets and the release of adenosine triphosphate (ATP). The expression of P-selectin and the activation of integrin αIIbβ3 were detected using flow cytometry. The spreading of platelets on a fibrinogen-coated surface was visualized using immunofluorescent staining. The mechanisms of the antiplatelet effect were investigated using Western blotting.

Results: In this study, ILTG inhibited collagen- and thrombin-induced platelet aggregation, the release of dense granules and α-granules, and the activation of integrin αIIbβ3 in a dose-dependent manner. In addition, ILTG suppressed the spreading of platelets on immobilized fibrinogen. In collagen-activated platelets, ILTG markedly inhibited the expression of phosphorylation of phospholipase C gamma-2 (PLCγ2) and protein kinase B (Akt).

Conclusions: These results indicated that ILTG could inhibit the collagen- and thrombin-induced platelet aggregation and granule release via the glycoprotein VI-mediated signal pathway .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113079PMC
http://dx.doi.org/10.21037/atm-22-2839DOI Listing

Publication Analysis

Top Keywords

activation integrin
8
integrin αiibβ3
8
spreading platelets
8
collagen- thrombin-induced
8
thrombin-induced platelet
8
platelet aggregation
8
platelets
7
platelet
5
iltg
5
inhibitory isoliquiritigenin
4

Similar Publications

Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.

View Article and Find Full Text PDF

Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape.

Matrix Biol

January 2025

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany. Electronic address:

Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion.

View Article and Find Full Text PDF

The role of laminins in cancer pathobiology: a comprehensive review.

J Transl Med

January 2025

Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!