A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biophysical analysis of luciferase bioluminescence mechanisms using a non-oxidizable coelenterazine. | LitMetric

Biophysical analysis of luciferase bioluminescence mechanisms using a non-oxidizable coelenterazine.

BBA Adv

Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.

Published: December 2022

luciferase (GLuc 18.2kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). It is a helical protein where two homologous sequential repeats form two anti-parallel bundles, each made of four helices. We previously identified a hydrophobic cavity as a prime candidate for the catalytic site, but GLuc's fast bioluminescence reaction hampered a detailed analysis. Here, we used azacoelenterazine (Aza-CTZ), a non-oxidizable coelenterazine (CTZ) analog, as a probe to investigate its binding mode to GLuc. While analysing GLuc's activity, we unexpectedly found that salt and monovalent anions are absolutely required for Gluc's bioluminescence, which retrospectively appears reasonable for a sea-dwelling organism. The NMR-based investigation, using chemical shift perturbations monitored by N-H HSQC, suggested that Aza-CTZ (and thus unoxidized CTZ) binds to residues in or near the hydrophobic cavity. These NMR data are in line with a recent structural prediction of GLuc, hypothesizing that large structural changes occur in regions remote from the hydrophobic cavity upon the addition of CTZ. Interestingly, these results point toward a unique mode of catalysis to achieve CTZ oxidative decarboxylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074842PMC
http://dx.doi.org/10.1016/j.bbadva.2022.100068DOI Listing

Publication Analysis

Top Keywords

hydrophobic cavity
12
non-oxidizable coelenterazine
8
coelenterazine ctz
8
ctz
5
biophysical analysis
4
analysis luciferase
4
luciferase bioluminescence
4
bioluminescence mechanisms
4
mechanisms non-oxidizable
4
coelenterazine luciferase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!