Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas transplantation. Hematoxylin and eosin (H and E) is one of the common histological staining techniques that provides information on the tissue cytoarchitecture. Adipose (fat) cells accumulation in pancreas has been shown to impact beta cell survival, its endocrine function and pancreatic steatosis and can cause non-alcoholic fatty pancreas disease (NAFPD). The current automated tools (E.g. Adiposoft) available for fat analysis are suited for white fat tissue which is homogeneous and easier to segment unlike heterogeneous tissues such as pancreas where fat cells continue to play critical physiopathological functions. The currently, available pancreas segmentation tool focuses on endocrine islet segmentation based on cell nuclei detection for diagnosis of pancreatic cancer. In the current study, we present a fat quantifying tool, Fatquant, which identifies fat cells in heterogeneous H and E tissue sections with reference to diameter of fat cell. Using histological images from a public database, we observed an intersection over union of 0.797 to 0.962 and 0.675 to 0.937 for manual versus Fatquant analysis of pancreas and liver, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074932PMC
http://dx.doi.org/10.1016/j.bbadva.2023.100084DOI Listing

Publication Analysis

Top Keywords

fat cells
12
fat
8
fat cell
8
hematoxylin eosin
8
pancreas
8
automated image
4
image analysis
4
analysis method
4
method detect
4
detect quantify
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

German Center for Neurodegenerative Diseases (DZNE), Bonn, NRW, Germany; Institute of Innate Immunity, Bonn, NRW, Germany.

Background: Western-diet (WD) can induce sterile inflammation and epigenetic reprogramming of myeloid cells, affecting their immune response (Christ et al., 2018). However, the molecular signaling mediating these changes was unknown.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex disorder and multiple cellular and molecular mechanisms are involved in AD onset and progression. Recent evidences have suggested that metabolic alterations are an important pathological feature in disease progression in AD. Likewise, diabetes and obesity, two mayor metabolic illnesses, are risk factors for AD.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.

View Article and Find Full Text PDF

Adenylate kinase 5 deficiency impairs epididymal white adipose tissue homeostasis and decreases fat mass.

J Vet Sci

December 2024

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.

Importance: The brain and adipose tissue interact metabolically, and if there is a problem with the energy metabolism of the brain, it cannot maintain the energy balance with the adipose tissue. Therefore, when adenylate kinase 5 (), which regulates energy metabolism in the brain, is knocked out, problems with lipid metabolism may occur.

Objective: We aimed to elucidate the metabolic function and phenotype of , a gene with an unknown function in metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!