The phenotypic effect of any genetic variant can be altered by variation at other genomic loci. Known as epistasis, these genetic interactions shape the genotype-phenotype map of every species, yet their origins remain poorly understood. To investigate this, we employed high-throughput genome editing to measure the fitness effects of 1,826 naturally polymorphic variants in four strains of . About 31% of variants affect fitness, of which 24% have strain-specific fitness effects indicative of epistasis. We found that beneficial variants are more likely to exhibit genetic interactions and that these interactions can be mediated by specific traits such as flocculation ability. This work suggests that adaptive evolution will often involve trade-offs where a variant is only beneficial in some genetic backgrounds, potentially explaining why many beneficial variants remain polymorphic. In sum, we provide a framework to understand the factors influencing epistasis with single-nucleotide resolution, revealing widespread epistasis among beneficial variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112194 | PMC |
http://dx.doi.org/10.1016/j.xgen.2023.100260 | DOI Listing |
Mol Biol Evol
January 2025
Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France.
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department for MicroData Analytics, Dalarna University, 791 88 Falun, Sweden.
Understanding the balance between robustness and evolvability is crucial in evolutionary dynamics. This study aims to determine how varying mutation rates and valley depths affect this interplay during adaptation. Using a two-peak fitness landscape model requiring populations to cross a fitness valley to reach a higher peak, we investigate how mutation rates and valley depths influence both evolvability-the capacity to generate beneficial mutations-and mutational robustness, which stabilizes populations at the highest peak.
View Article and Find Full Text PDFmLife
December 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China.
Biol Lett
December 2024
University of Maryland College Park, College Park, MD, USA.
Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modellers to specify a function linking trait values. The choice of trade-off function can be consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to genetic polymorphisms. Despite their importance, our current theory has little to say on which trade-off functions are the most biologically plausible.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA.
Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!