Background: This study analysed the performance of radiomics features extracted from computed tomography (CT) images with different reconstruction parameters in differentiating malignant and benign pulmonary nodules.
Methods: We evaluated routine chest CT images acquired from 148 participants with pulmonary nodules, which were pathologically diagnosed during surgery in West China Hospital, including a 5 mm unenhanced lung window, a 5 mm unenhanced mediastinal window, a 5 mm contrast-enhanced mediastinal window and a 1 mm unenhanced lung window. The pulmonary nodules were segmented, and 1409 radiomics features were extracted for each window. Then, we created 15 cohorts consisting of single windows or multiple windows. Univariate correlation analysis and principal component analysis were performed to select the features, and logistic regression analysis was performed to establish models for each cohort. The area under the curve (AUC) was applied to compare model performance.
Results: There were 75 benign and 73 malignant pulmonary nodules, with mean diameters of 18.63 and 19.86 mm, respectively. For the single-window setting, the AUCs of the radiomics model from the 5 mm unenhanced lung window, 5 mm unenhanced mediastinal window, 5 mm contrast-enhanced mediastinal window and 1 mm unenhanced lung window were 0.771, 0.808, 0.750, and 0.771 in the training set and 0.711, 0.709, 0.684, and 0.674 in the test set, respectively. Regarding the multiple-window setting, the radiomics model based on all four windows showed an AUC of 0.825 in the training set and 0.743 in the test set. Statistically, the 15 models demonstrated comparable performances (P > 0.05).
Conclusion: A single chest CT window was acceptable in predicting the malignancy of pulmonary nodules, and additional windows did not statistically improve the performance of the radiomics models. In addition, slice thickness and contrast enhancement did not affect the diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116652 | PMC |
http://dx.doi.org/10.1186/s12890-023-02366-y | DOI Listing |
BMC Cancer
January 2025
Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.
Background: Co-existent pulmonary tuberculosis and lung cancer (PTB-LC) represent a unique disease entity often characterized by missed or delayed diagnosis. This study aimed to investigate the clinical and radiological features of patients diagnosed with PTB-LC.
Methods: Patients diagnosed with active PTB-LC (APTB-LC), inactive PTB-LC (IAPTB), and LC alone without PTB between 2010 and 2022 at our institute were retrospectively collected and 1:1:1 matched based on gender, age, and time of admission.
Qual Life Res
January 2025
Shantou University Medical College, Shantou, 515041, China.
Purpose: To investigate whether surgery is more effective than follow-up in reducing psychological distress for patients with observable indeterminate pulmonary nodules (IPNs) and to assess if psychological distress can serve as a potential surgical indication for IPNs.
Methods: This prospective observational study included 341 patients with abnormal psychometric results, as measured by the Hospital Anxiety and Depression Scale (HADS). Of these, 262 patients opted for follow-up and 79 chose surgery.
J Health Econ Outcomes Res
September 2024
Avalon Health Economics, Coral Gables, Florida, USA.
Early detection of lung cancer is crucial for improving patient outcomes. Although advances in diagnostic technologies have significantly enhanced the ability to identify lung cancer in earlier stages, there are still limitations. The alarming rate of false positives has resulted in unnecessary utilization of medical resources and increased risk of adverse events from invasive procedures.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland.
The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection.
View Article and Find Full Text PDFIntroduction: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormalities on CXRs, which may expand diagnostic support to a wider field of health professionals. There is a paucity of evidence on the impact of AI algorithms in assisting healthcare professionals (other than radiologists) who regularly review CXR images in their daily practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!