Background: This study aims to explore the antibacterial activity of cethromycin against Staphylococcus aureus (S. aureus), and its relationship with multilocus sequence typing (MLST), erythromycin ribosomal methylase (erm) genes and macrolide-lincosamide-streptogramin B (MLSB) phenotypes of S. aureus.
Results: The minimum inhibitory concentrations (MICs) of cethromycin against 245 S. aureus clinical isolates ranged from 0.03125 to ≥ 8 mg/L, with the resistance of 38.8% in 121 methicillin-resistant S. aureus (MRSA). This study also found that cethromycin had strong antibacterial activity against S. aureus, with the MIC ≤ 0.5 mg/L in 55.4% of MRSA and 60.5% of methicillin-sensitive S. aureus (MSSA), respectively. The main MLSTs of 121 MRSA were ST239 and ST59, and the resistance of ST239 isolates to cethromycin was higher than that in ST59 isolates (P = 0.034). The top five MLSTs of 124 MSSA were ST7, ST59, ST398, ST88 and ST120, but there was no difference in the resistance of MSSA to cethromycin between these STs. The resistance of ermA isolates to cethromycin was higher than that of ermB or ermC isolates in MRSA (P = 0.016 and 0.041, respectively), but the resistance of ermB or ermC isolates to cethromycin was higher than that of ermA isolates in MSSA (P = 0.019 and 0.026, respectively). The resistance of constitutive MLSB (cMLSB) phenotype isolates to cethromycin was higher than that of inducible MLSB (iMLSB) phenotype isolates in MRSA (P < 0.001) or MSSA (P = 0.036). The ermA, ermB and ermC genes was mainly found in ST239, ST59 and ST1 isolates in MRSA, respectively. Among the MSSA, the ermC gene was more detected in ST7, ST88 and ST120 isolates, but more ermB genes were detected in ST59 and ST398 isolates. The cMLSB phenotype was more common in ST239 and ST59 isolates of MRSA, and was more frequently detected in ST59, ST398, and ST120 isolates of MSSA.
Conclusion: Cethromycin had strong antibacterial activity against S. aureus. The resistance of MRSA to cethromycin may had some clonal aggregation in ST239. The resistance of S. aureus carrying various erm genes or MLSB phenotypes to cethromycin was different.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116812 | PMC |
http://dx.doi.org/10.1186/s12866-023-02858-1 | DOI Listing |
BMC Microbiol
April 2023
Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6Th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
Background: This study aims to explore the antibacterial activity of cethromycin against Staphylococcus aureus (S. aureus), and its relationship with multilocus sequence typing (MLST), erythromycin ribosomal methylase (erm) genes and macrolide-lincosamide-streptogramin B (MLSB) phenotypes of S. aureus.
View Article and Find Full Text PDFPlasmodium vivax bench research greatly lags behind Plasmodium falciparum because of an inability to culture in vitro. A century ago, intentionally inducing a malaria infection was a strategy commonly used to cure late-stage syphilis. These controlled human malaria infections were used with expertise and persisted to the end of World War II.
View Article and Find Full Text PDFJ Chemother
September 2019
WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro , Sweden.
Antimicrobial resistance in is a major public health problem, which compromises the treatment of gonorrhoea globally. We evaluated the activity of the ketolide cethromycin against a large panel of clinical gonococcal isolates and international reference strains ( = 254), including numerous multidrug-resistant and extensively drug-resistant isolates. Cethromycin showed potent activity against most of the gonococcal isolates with the following modal MIC, MIC and MIC: 0.
View Article and Find Full Text PDFExpert Opin Investig Drugs
October 2014
Anti-Infectives and Oncology , PO Box 3176, Princeton, NJ 08543 , USA
Ketolides are erythromycin A derivatives with a keto group replacing the cladinose sugar and an aryl-alkyl group attached to the lactone macrocycle. The aryl-alkyl extension broadens its antibacterial spectrum to include all pathogens responsible for community-acquired pneumonia (CAP): Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis as well as atypical pathogens (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila). Ketolides have extensive tissue distribution, favorable pharmacokinetics (oral, once-a-day) and useful anti-inflammatory/immunomodulatory properties.
View Article and Find Full Text PDFCurr Microbiol
November 2014
Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada,
Between 2008 and 2011, 6,895 Streptococcus pneumoniae isolates were submitted to the Canadian Bacterial Surveillance Network and underwent in vitro susceptibility testing. Fifteen percent of S. pneumoniae isolates were collected from pediatric patients (0-15 years old), 48.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!