Context: In this paper, the adsorption characteristics of five sulfonamide antibiotic molecules on carbon nanotubes were investigated using density functional theory (DFT) calculations. The adsorption configurations of different adsorption sites were optimized, and the most stable adsorption configuration of each sulfonamide molecule was determined by adsorption energy comparison, and the relative adsorption stability of five sulfonamide molecules on carbon nanotubes was determined by comparing their adsorption energies, i.e., sulfamethazine > sulfadiazine > sulfamerazine > sulfamethoxazole > sulfanilamide. The electron densities of the adsorption configurations were then calculated to confirm that the adsorption of five sulfonamide drug molecules on carbon nanotubes should be physical adsorption. Moreover, the adsorption energy of five sulfonamide molecules on carbon nanotubes in the aqueous environment was larger than that in the vacuum even though the adsorption process remain to be physical adsorption. The adsorption characteristics of the five sulfonamide molecules in various acid-base environments were finally investigated. In contrast, the adsorption energies of the five drug molecules in acid-base environments were significantly reduced, indicating that carbon nanotubes may need to have a suitable pH range to achieve the optimal adsorption effect when they are used for the treatment of sulfonamide antibiotics.
Methods: In this paper, we use density functional theory (DFT) with PBE functional to study the adsorption properties of five sulfonamides on carbon nanotubes. The structural optimization and the calculation of electronic structural properties are carried out by CP2K package (version 7.1), adopting the DZVP-MOLOPT-SR-GTH basis set and Goedeck-Teter-Hutter (GTH) pseudo potential. Grimme's D3 correction is used to during all the calculations to correctly capture the influence of the van der Waals interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05559-8 | DOI Listing |
Sci Adv
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.
The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.
This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!