As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ-5'-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of β-D-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via D-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5'-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼10mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116470 | PMC |
http://dx.doi.org/10.1038/s41467-023-37942-7 | DOI Listing |
Chemistry
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302, West Bengal, India.
All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
The selective reaction of cyclic aminoperoxides with FeCl proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans.
View Article and Find Full Text PDFSmall
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China.
Hydroboration of allenes is powerful and atom-economic approach to the synthesis of organoboranes, such as the highly versatile allylboranes. However, regarding regiocontrol, existing methods uniformly deliver the boron functionality to the less hindered β- or γ-position, but not the α-position. The latter is particularly challenging for allenes with substantial steric difference between the two terminals and lacking electronic bias (e.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States.
The Suzuki-Miyaura biaryl cross-coupling is the pivotal technology for carbon-carbon coupling in pharmaceutical, polymer, and agrochemical fields. A long-standing challenge has been the development of efficient precursors for the decarbonylative cross-coupling of amide bonds. Herein, we report a highly chemoselective palladium-catalyzed Suzuki-Miyaura cross-coupling of -mesyl amides for the synthesis of biaryls by a tandem N-C(O)/C-C bond activation with high selectivity for decarbonylative cleavage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!