Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methods allow the enhancement of nanofibers via self-assembly are potentially important for new disciplines with many advantages, including multi-anchor interaction, intrinsic mechanical properties and versatility. Herein, a microfluidic-assisted self-assembly process to construct hydroxyl functionalized boron nitride nanosheets (OH-BNNS)/graphene oxide (GO)/thermoplastic polyurethane (TPU) composite nanofiber film, in which stable and precisely controlled self-assembly is fulfilled by the confined ultra-small-volume chip is demonstrated. Multiple fine structural analyses alongside with the density-functional theory (DFT) calculations are implemented to confirm the synergistic effect of noncovalent interactions (hydrogen bonding interaction, π - π stacking interaction, and van der Waals attraction) plays a critical role in the robust micro-structure and a massive 700% enhancement of mechanical strength via adding only 0.3 wt% OH-BNNS and GO. Importantly, profiled from broadband optical absorption ability, robust mechanical properties and outstanding flexibility, the self-assembled 3D OH-BNNS/GO/TPU nanofiber film reveals an adorable evaporation rate of 4.04 kg m h under one sun illumination with stable energy transfer efficiency (93.2%) by accompanying hydrogen bonding interaction. This microfluidic-assisted self-assembly strategy will provide a constructive entry point for the rational design of nanofibers and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202301310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!