Winners take all: competition for carbon resource determines grain fate.

Trends Plant Sci

State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Published: August 2023

As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2023.03.015DOI Listing

Publication Analysis

Top Keywords

grain siblings
12
carbon resource
8
capacity grain
8
grain
5
winners competition
4
carbon
4
competition carbon
4
resource determines
4
determines grain
4
grain fate
4

Similar Publications

Thyroid hormone (TH) is an endocrine factor with a diverse array of developmental, metamorphic, and metabolic functions conserved across vertebrates. Zebrafish (Danio rerio) are a tractable model for endocrinology research, and recent research efforts focus on the roles of TH in zebrafish morphogenesis, growth and behavior. Several powerful approaches have been developed in zebrafish to modulate the TH axis and peripheral sensitivity to the hormone.

View Article and Find Full Text PDF

Homozygous variants in WDR83OS lead to a neurodevelopmental disorder with hypercholanemia.

Am J Hum Genet

November 2024

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA. Electronic address:

Article Synopsis
  • - WDR83OS encodes a protein called Asterix, which works with another protein, CCDC47, to help fold large proteins correctly, specifically those with transmembrane domains.
  • - Recent findings linked mutations in CCDC47 and WDR83OS to trichohepatoneurodevelopmental syndrome, showing consistent symptoms like neurodevelopmental disorders, facial dysmorphism, and liver dysfunction across multiple families.
  • - A zebrafish model lacking Wdr83os function demonstrated its crucial role in the nervous system and lipid absorption, further establishing a connection between WDR83OS mutations and neurological diseases characterized by elevated bile acids.
View Article and Find Full Text PDF

The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior.

eNeuro

October 2024

Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior.

View Article and Find Full Text PDF

Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish.

BMC Biol

July 2024

International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.

Background: Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction.

View Article and Find Full Text PDF

Combined Pituitary Hormone Deficiency in -Knockout Zebrafish.

Int J Mol Sci

July 2024

School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.

Article Synopsis
  • *Research using a zebrafish model with LHX4 knockout shows that these fish have reduced expression of key pituitary hormones, survive to adulthood despite size reduction, and show fertility differences between males and females.
  • *This zebrafish model provides a valuable tool for studying the effects of LHX4 mutations, similar to those seen in patients with combined pituitary hormone deficiency (CPHD).*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!