Sustained modulation of primate deep brain circuits with focused ultrasonic waves.

Brain Stimul

Department of Biomedical Engineering, University of Utah, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America. Electronic address:

Published: June 2023

AI Article Synopsis

Article Abstract

Background: Transcranial focused ultrasound has the potential to noninvasively modulate deep brain circuits and impart sustained, neuroplastic effects.

Objective: Bring the approach closer to translations by demonstrating sustained modulation of deep brain circuits and choice behavior in task-performing non-human primates.

Methods: Low-intensity transcranial ultrasound of 30 s in duration was delivered in a controlled manner into deep brain targets (left or right lateral geniculate nucleus; LGN) of non-human primates while the subjects decided whether a left or a right visual target appeared first. While the animals performed the task, we recorded intracranial EEG from occipital screws. The ultrasound was delivered into the deep brain targets daily for a period of more than 6 months.

Results: The brief stimulation induced effects on choice behavior that persisted up to 15 minutes and were specific to the sonicated target. Stimulation of the left/right LGN increased the proportion of rightward/leftward choices. These effects were accompanied by an increase in gamma activity over visual cortex. The contralateral effect on choice behavior and the increase in gamma, compared to sham stimulation, suggest that the stimulation excited the target neural circuits. There were no detrimental effects on the animals' discrimination performance over the months-long course of the stimulation.

Conclusion: This study demonstrates that brief, 30-s ultrasonic stimulation induces neuroplastic effects specifically in the target deep brain circuits, and that the stimulation can be applied daily without detrimental effects. These findings encourage repeated applications of transcranial ultrasound to malfunctioning deep brain circuits in humans with the goal of providing a durable therapeutic reset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330836PMC
http://dx.doi.org/10.1016/j.brs.2023.04.012DOI Listing

Publication Analysis

Top Keywords

deep brain
28
brain circuits
20
choice behavior
12
sustained modulation
8
transcranial ultrasound
8
brain targets
8
increase gamma
8
detrimental effects
8
deep
7
brain
7

Similar Publications

Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.

Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.

View Article and Find Full Text PDF

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge.

View Article and Find Full Text PDF

The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.

View Article and Find Full Text PDF

Endometriosis is a widely spread disease that affects about 8% of the world's female population. This condition may be described as a spread of endometrial tissue apart from the uterine cavity, but this process's pathomechanism is still unsure. Apart from classic endometriosis symptoms, which are pelvic pain, infertility, and bleeding problems, there are neuropsychiatric comorbidities that are usually difficult to diagnose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!