A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities.

Phytochemistry

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. Electronic address:

Published: July 2023

The sesquiterpene β-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-β-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-β-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-β-bisabolene synthase. The production of (R)-β-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-β-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-β-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2023.113681DOI Listing

Publication Analysis

Top Keywords

medicinal plant
8
plant colquhounia
8
colquhounia coccinea
8
coccinea var
8
var mollis
8
r-β-bisabolene synthase
8
farnesyl diphosphate
8
r-β-bisabolene engineered
8
engineered coli
8
r-β-bisabolene
7

Similar Publications

Background: Sub-Saharan Africa faces one of the highest burdens of venereal diseases (VDs) globally. This review aims to critically evaluate the existing literature on the diverse Indigenous knowledge and medicinal plants utilised for treating VDs in sub-Saharan Africa.

Methods: We used the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) protocol to guide the execution of the review.

View Article and Find Full Text PDF

PTGES3 proteolysis using the liposomal peptide-PROTAC approach.

Biol Direct

December 2024

Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.

Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation.

View Article and Find Full Text PDF

Comparative plastomic analysis of cultivated Dioscorea polystachya and its close relatives provides insights on the inter- and intraspecific phylogenies and potential wild origins of domestication.

BMC Plant Biol

December 2024

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.

Background: Dioscorea polystachya and its closely related species are original plants of the tuber crop "yam", which had been intensively use for medicinal and food purposes and widely cultivated in northern China and its surrounding areas with a long history. Many cultivars of these species are often confused with one another because of similar tuber morphology, however, conventional DNA barcoding faces practical limitations restricting the method to effectively identify closely related species. In addition, phylogenetic relationships among various cultivar groups of Chinese yam (D.

View Article and Find Full Text PDF

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

causing Dieback disease in (Lour.) Per. in China.

Plant Dis

December 2024

Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, China;

Litsea cubeba (Lour.) Per., named as May Cang, is a rare deciduous evergreen tree and cultivated for its ethnopharmacological properties and medicinal uses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!