A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of polyamidoamine dendrimer-functionalized chitosan beads for the removal of Ag(I), Cu(II), and Pb(II). | LitMetric

Preparation of polyamidoamine dendrimer-functionalized chitosan beads for the removal of Ag(I), Cu(II), and Pb(II).

Int J Biol Macromol

School of Metallurgy, Northeastern University, Shenyang 110819, China; Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China. Electronic address:

Published: July 2023

Chitosan bead grafted by third-generation dendrimers (CB-G3) with a diameter of 1.40 mm was synthesized to investigate their performance in recovering Ag(I), Cu(II), and Pb(II) ions in aqueous media. The prepared adsorbents were characterized by XRD, FT-IR, elemental analysis, TGA, and SEM, and the effects of pH, contact time, concentration, and temperature were examined. The results showed that the adsorbents were successfully fabricated. The optimum pH value was 5, and the increased generation number contributed to adsorption capacity improvement, indicating that electrostatic interactions between amine groups and metal ions are the governing mechanism of adsorption by the CB-G3. The kinetics, isotherms, and thermodynamics of Ag(I), Cu(II), and Pb(II) adsorption onto the CB-G3 were investigated. The adsorption processes can be described using pseudo-second-order kinetic and Langmuir models. The maximum monolayer adsorption capacities were 105.62, 88.82, and 97.87 mg·g for Ag(I), Cu(II), and Pb(II) at 30 °C within 210 min, respectively. Electrostatic interactions and hydrogen bonds are the main mechanisms between metal ions and N atoms. Therefore, the CB-G3 is a promising candidate for Ag(I), Cu(II), and Pb(II) adsorption owing to its splendid ability in easy separation, good adsorptivity, and reusability for efficiently adsorbing Ag(I), Cu(II), and Pb(II) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124543DOI Listing

Publication Analysis

Top Keywords

agi cuii
24
cuii pbii
24
pbii ions
8
electrostatic interactions
8
metal ions
8
adsorption cb-g3
8
pbii adsorption
8
agi
6
cuii
6
pbii
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!