Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chitosan bead grafted by third-generation dendrimers (CB-G3) with a diameter of 1.40 mm was synthesized to investigate their performance in recovering Ag(I), Cu(II), and Pb(II) ions in aqueous media. The prepared adsorbents were characterized by XRD, FT-IR, elemental analysis, TGA, and SEM, and the effects of pH, contact time, concentration, and temperature were examined. The results showed that the adsorbents were successfully fabricated. The optimum pH value was 5, and the increased generation number contributed to adsorption capacity improvement, indicating that electrostatic interactions between amine groups and metal ions are the governing mechanism of adsorption by the CB-G3. The kinetics, isotherms, and thermodynamics of Ag(I), Cu(II), and Pb(II) adsorption onto the CB-G3 were investigated. The adsorption processes can be described using pseudo-second-order kinetic and Langmuir models. The maximum monolayer adsorption capacities were 105.62, 88.82, and 97.87 mg·g for Ag(I), Cu(II), and Pb(II) at 30 °C within 210 min, respectively. Electrostatic interactions and hydrogen bonds are the main mechanisms between metal ions and N atoms. Therefore, the CB-G3 is a promising candidate for Ag(I), Cu(II), and Pb(II) adsorption owing to its splendid ability in easy separation, good adsorptivity, and reusability for efficiently adsorbing Ag(I), Cu(II), and Pb(II) ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!