Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke.

J Ethnopharmacol

College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, China. Electronic address:

Published: August 2023

AI Article Synopsis

  • Huangxiong Formula (HXF), made from four specific herbs, is used to treat ischemic stroke, but its molecular workings are not well understood.
  • The study employs a combination of network pharmacology, in vitro, and in vivo experiments to explore HXF's bioactive components and how they target ischemic stroke.
  • Various advanced methods like UPLC and database analyses were used to identify key components and their targets, leading to the construction of a compound-target-pathway network and testing HXF's effects in animal models and cell cultures.

Article Abstract

Ethnopharmacological Relevance: Huangxiong Formula (HXF) is composed of four herbs: Rheum palmatum L., Ligusticum striatum DC., Curcuma aromatica Salisb., and Acorus gramineus Aiton. HXF is clinically used for the treatment of ischemic stroke (IS). However, its molecular mechanism remains unclear.

Aim Of The Study: A network pharmacology-based strategy combined with experimental study in vivo and in vitro to were used to investigate the bioactive components, potential targets, and molecular mechanisms of HXF in the treatment of IS.

Materials And Methods: The components of HXF were detected by ultra-performance liquid chromatography (UPLC). The potential active ingredients of HXF were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and corresponding targets were discerned through the Swiss TargetPrediction database. IS-related targets were obtained from Genecards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DisGeNET. The intersection of ingredient and disease targets was screened, and a herbal-compound-target network was constructed. A protein-protein interaction (PPI) network was created, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Based on these analyses, we established a compound-target-pathway (C-T-P) network. A cerebral ischemia-reperfusion (I/R) animal model was established, and the cerebral protective effect of HXF was assessed. The accuracy of the predicted targets was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Hippocampal neuronal injury cell model induced by oxygen-glucose deprivation and reperfusion (OGD/R) was used to evaluate the protective effect of α-Asarone. Furthermore, molecular docking, drug affinity responsive target stability (DARTS) assay, and cellular thermal shift assay (CETSA) were performed to verify whether α-Asarone can bind to PI3K.

Results: A total of 44 active ingredients and 795 gene targets were identified through network pharmacology. Network analysis showed that naringenin, eupatin, kaempferol, and α-Asarone were possible drug candidates. SRC, AKT1, TP53, MAPK3, STAT3, HRAS, CTNNB1, EGFR, VEGFA, PIK3R1 could serve as potential drug targets. KEGG analysis implied that the PI3K/AKT signaling pathway might play an important role in treating IS by HXF. Moreover, HXF significantly reduced neurological impairment, cerebral infarct volume, brain index, and brain histopathological damage in I/R rats. The mRNA expression of the top 10 potential targets was verified in the brain tissue. The C-T-P network and UPLC analysis suggested that α-Asarone might be an important component of HXF and can inhibit oxidative stress and apoptosis in HT22 cells by activating the PI3K/AKT signaling pathway. Molecular docking, DARTS, and CETSA assay analysis confirmed that there were direct interactions between α-Asarone and PI3K.

Conclusion: HXF had a therapeutic effect in IS with multi-component, multi-target, and multi-approach features. α-Asarone, identified as one of the major active components of HXF, could alleviate oxidative stress and apoptosis by targeting PI3K/AKT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116507DOI Listing

Publication Analysis

Top Keywords

active ingredients
12
hxf
11
network
8
network pharmacology-based
8
huangxiong formula
8
ischemic stroke
8
targets
8
potential targets
8
components hxf
8
c-t-p network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!