The current investigation aimed at bimetallic gold-silver nanoparticles (Au/Ag NPs), here called BM-GS NPs, synthesis using sericin protein as the reducing agent in an easy, cost-effective, and sustainable way. The obtained BM-GS NPs were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), atomic force microscopy (AFM), Dynamic light scattering (DLS) and Zeta potential, X-ray Powder Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and Thermogravimetric analysis followed by evaluation of its multitherapeutic and photocatalytic degradation potentials. The TEM analysis revealed its spherical nature and the EDS result displayed the presence of both Ag and Au elements, confirming the synthesis of BM-GS NPs. The XRD pattern verified the crystalline nature of the nanoparticles (NPs). The DLS analysis showed an average size of 86.08 d nm and the zeta potential showed a highly negative value (-26.3 mV) which specifies that the generated bimetallic NPs are stable. The BM-GS NPs exhibited positive wound healing potential (with 63.38% of wound closure rate at 25 μg/ml, as compared to 54.42% by the untreated control) with very negligible toxicity effect on the cell viability of the normal keratinocyte cells. It also demonstrated promising antioxidant properties with 65.00%, 69.23%, and 63.03% activity at 100 μg/ml concentration for ABTS (2, 2-azinobis) (3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (1, 1 diphenyl-2-picrylhydrazyl) and SOD (superoxide dismutase enzyme) assays respectively, antidiabetic potential (with a significantly high α-glucosidase inhibition potential of 99.69% at 10μg/ml concentration and 62.11% of α-amylase enzyme inhibition at 100 μg/ml concentration) and moderate tyrosinase inhibitory potential (with 17.09% at 100 μg/ml concentration). Besides, it displayed reasonable antibacterial potential with the diameter of zone of inhibition ranging between 10.89 and 12.39 mm. Further, its antibacterial mode of action reveals that its effects could be due to being very smaller, the NPs could have penetrated inside the cellular membrane thereby causing rupture and damage to the interior materials leading to cellular lysis. The photocatalytic evaluation showed that synthesized BM-GS NPs have the efficiency of degrading methylene blue dye by 34.70% within 3 h of treatment. The above findings revealed the multi-therapeutic efficacy of the sericin globular protein-mediated BM-GS NPs and its potential future applications in the cosmetics and food sector and environmental contamination management industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115935DOI Listing

Publication Analysis

Top Keywords

bm-gs nps
24
nps
10
potential
9
photocatalytic degradation
8
zeta potential
8
100 μg/ml concentration
8
bm-gs
6
sericin mediated
4
mediated gold/silver
4
gold/silver bimetallic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!