Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System.

Dev Neurosci

Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.

Published: April 2023

Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000530621DOI Listing

Publication Analysis

Top Keywords

hippo pathway
20
schwann cells
8
yap taz
8
peripheral nerve
8
hippo
5
pathway
5
pathway schwann
4
cells regeneration
4
regeneration peripheral
4
peripheral nervous
4

Similar Publications

Background: Adrenocortical cancer (ACC) is rare and aggressive, with YAP1 overexpression associated with poor outcomes in pediatric patients. In this study, we investigated the mechanisms by which YAP1 drives ACC progression and explored it as a potential target therapy.

Methods: YAP1 expression and methylation in ACC were analyzed from pediatric and adult cohorts.

View Article and Find Full Text PDF

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients.

Invest Ophthalmol Vis Sci

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.

Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.

Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Recent transcriptome analysis has demonstrated increased expression of Vascular Endothelial Growth Factor receptor-1 (VEGFR-1/FLT1) and decreased expression of VEGFR-2/KDR in AD brain. Increased expression of VEGFR-1 and its ligand VEGFB were associated with a more rapid rate of cognitive decline, providing evidence of a potential link between aberrant VEGFR-1 expression in AD pathogenesis. In this study, we explored the potential role of aberrant VEGFR-1 expression in neurons on AD pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!