Quantitative analysis and hepatoprotective mechanism of Cistanche deserticola Y. C. Ma against alcohol-induced liver injury in mice.

Biomed Pharmacother

Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250300, China. Electronic address:

Published: June 2023

Cistanche deserticola Y. C. Ma (CD), known as "desert ginseng", has been found to have hepatoprotective effect. This research aimed to investigate the quality control and its alleviating effect on alcoholic liver injury in mice. In this study, for the first time, a sensitive and efficient ultra-high-performance liquid chromatography with quadrupole ion-trap mass spectrometry (UPLC-Q-TRAP/MS) method was developed to rapidly characterize nine representative phenylethanoid glycosides (PhGs) in the CD extract within 14 min, offering a reference for the quality control standard of this plant. In addition, we found that the CD extract significantly inhibited the weight loss, decreased the liver index, and attenuated excessive lipid deposition, inflammatory and oxidative stress in the mice liver. With the help of the high-throughput lipidomics technique, we discovered that CD markedly reversed 17 lipid metabolites and their involved linoleic acid, arachidonic acid and glycerophospholipid metabolic pathways. As these metabolites are mainly associated with lipid metabolism and liver damage, we further used molecular biological tests to found that CD could regulate the upstream genes and proteins of the lipid metabolism pathway, including adenosine 5'-monophosphate-activated protein kinase (AMPK), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and peroxidase proliferators activate receptors α (PPARα). In conclusion, this study elucidates the modulatory effects of CD on lipid metabolism disorders in alcoholic fatty liver from holistic system and provides a reference for further research and development of CD as a therapeutic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114719DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
cistanche deserticola
8
liver injury
8
injury mice
8
quality control
8
liver
6
lipid
5
quantitative analysis
4
analysis hepatoprotective
4
hepatoprotective mechanism
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!