Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A fundamental breakthrough in neurobiology has been the formulation of the neuron doctrine by Santiago Ramón y Cajal, which stated that the nervous system is composed of discrete cells. Electron microscopy later confirmed the doctrine and allowed the identification of synaptic connections. In this work, we used volume electron microscopy and three-dimensional reconstructions to characterize the nerve net of a ctenophore, a marine invertebrate that belongs to one of the earliest-branching animal lineages. We found that neurons in the subepithelial nerve net have a continuous plasma membrane that forms a syncytium. Our findings suggest fundamental differences of nerve net architectures between ctenophores and cnidarians or bilaterians and offer an alternative perspective on neural network organization and neurotransmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.ade5645 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!